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CHAPTER 0

Introduction

This computer primer supplements Applied Linear Regression, 4th Edition (Weisberg, 2014), abbrevi-
ated alr thought this primer. The expectation is that you will read the book and then consult this
primer to see how to apply what you have learned using R.

The primer often refers to specific problems or sections in alr using notation like alr[3.2] or
alr[A.5], for a reference to Section 3.2 or Appendix A.5, alr[P3.1] for Problem 3.1, alr[F1.1] for
Figure 1.1, alr[E2.6] for an equation and alr[T2.1] for a table. The section numbers in the primer
correspond to section numbers in alr. An index of R functions and packages is included at the end of
the primer.

vi
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0.1 Getting R and Getting Started

If you don’t already have R, go to the website for the book

http://z.umn.edu/alr4ed

and follow the directions there.

0.2 Packages You Will Need

When you install R you get the basic program and a common set of packages that give the program
additional functionality. Three additional packages not in the basic distribution are used extensively
in alr: alr4, which contains all the data used in alr in both text and homework problems, car, a
comprehensive set of functions added to R to do almost everything in alr that is not part of the basic R,
and finally effects, used to draw effects plots discussed throughout this Primer. The website includes
directions for getting and installing these packages.

0.3 Using This Primer

Computer input is indicated in the Primer in this font, while output is in this font. The usual
command prompt “>” and continuation “+” characters in R are suppressed so you can cut and paste
directly from the Primer into an R window. Beware, however that a current command may depend on
earlier commands in the chapter you are reading!

You can get a copy of this primer while running R, assuming you have an internet connection. Here
are examples of the use of this function:

library(alr4)

alr4Web() # opens the website for the book in your browser

alr4Web("primer") # opens the primer in a pdf viewer

http://z.umn.edu/alr4ed
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The first of these calls to alr4Web opens the web page in your browser. The second opens the latest
version of this Primer in your browser or pdf viewer. This primer is formatted for reading on the
computer screen, with aspect ratio similar to a tablet like an iPad in landscape mode.

If you use Acrobat Reader to view the Primer, set View → Page Display → Single Page View.
Also, bookmarks should be visible to get a quick table of contents; if the bookmarks are not visible,
click on the ribbon in the toolbar at the left of the Reader window.

0.4 If You Are New to R. . .

Chapter 1 of the book An R Companion To Applied Regression, Fox and Weisberg (2011), provides an
introduction to R for new users. You can get the chapter for free, from

http://www.sagepub.com/upm-data/38502_Chapter1.pdf

The only warning: use library(alr4) in place of library(car), as the former loads the data sets
from this book as well as the car.

0.5 Getting Help

Every package, R function, and data set in a package has a help page. You access help with the help

function. For example, to get help about the function sum, you can type

help(sum)

The help page isn’t shown here: it will probably appear in your browser, depending on how you installed
R. Reading an R help page can seem like an adventure in learning a new language. It is hard to write
help pages, and also can be hard to read them.

You might ask for help, and get an error message:

help(bs)

http://www.sagepub.com/upm-data/38502_Chapter1.pdf
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No documentation for ’bs’ in specified packages and libraries:
you could try ’??bs’

In this instance the bs function is in the package splines, which has not been loaded. You could get
the help page anyway, by either of the following:

help(bs, package="splines")

or

library(splines)

help(bs)

You can get help about a package:

help(package="car")

which will list all the functions and data sets available in the car package, with links to their help pages.
Quotation marks are sometimes needed when specifying the name of something; in the above example
the quotation marks could have been omitted.

The help command has an alias: you can type either

help(lm)

or

?lm

to get help. We use both in this primer when we want to remind you to look at a help page.

0.6 The Very Basics

Before you can begin doing any useful computing, you need to be able to read data into the program,
and after you are done you need to be able to save and print output and graphs.
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0.6.1 Reading a Data File

Nearly all the computing in this book and in the homework problems will require that you work with
a pre-defined data set in the alr4 package. The name of the data set will be given in the text or in
problems. For example the first data set discussed in alr[1.1] is the Heights data. All you need to do
is start R, and then load the alr4 package with the library command, and the data file is immediately
available:

library(alr4)

dim(Heights)

[1] 1375 2

names(Heights)

[1] "mheight" "dheight"

head(Heights)

mheight dheight
1 59.7 55.1
2 58.2 56.5
3 60.6 56.0
4 60.7 56.8
5 61.8 56.0
6 55.5 57.9

From the dim command we see that the dimension of the data file is 1375 rows and 2 columns. From
names we see the names of the variables, and from head we see the first 6 rows of the file. Similarly, for
the wblake data set,

summary(wblake)
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Age Length Scale
Min. :1.0 Min. : 55 Min. : 1.05
1st Qu.:2.5 1st Qu.:138 1st Qu.: 3.57
Median :5.0 Median :194 Median : 5.79
Mean :4.2 Mean :193 Mean : 5.86
3rd Qu.:6.0 3rd Qu.:252 3rd Qu.: 8.02
Max. :8.0 Max. :362 Max. :14.71

The summary function returns summary information about each of the the variables in the data file,
such as the means, medians, and a few quantiles. You can view the whole data file either with the
print command,

print(Heights)

or simply by typing the name of the object,

Heights

The output from these last two commands has been omitted.

0.6.2 Reading Your Own Data into R

The command read.table is used to read a plain data file (see also Companion[2.1]) . The general
form of this function is:

d <- read.table("filename", header=TRUE, na.strings="?")

The filename is a quoted string, like "C:/My Documents/data.txt", giving the name of the data file
and its path. All paths in R use forward slashes “/”, even with Windows where backslashes “\” are
standard1. In place of the file name you can use

1Getting the path right can be frustrating. If you are using R, select File→Change dir, and then use browse to select
the directory that includes your data file. Once you set the path you need only given the name of the file, in quotation
marks, to read.table.
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d <- read.table(file.choose(), header=TRUE, na.strings="?")

in which case a standard file dialog will open and you can select the file you want in the usual way.
The argument header=TRUE indicates that the first line of the file has variable names (you would say

header=FALSE if this were not so, and then the program would assign variable names like X1, X2 and
so on), and the na.strings="?" indicates that missing values, if any, are indicated by a question mark
rather than the default of NA used by R. read.table has many more options; type help(read.table)

to learn about them. R has a package called foreign that can be used to read files of other types.
You can also read the data directly into R from the internet:

d <-read.table("http://users.stat.umn.edu/~sandy/alr4ed/data/Htwt.csv",

header=TRUE, sep=",")

You can get most of the data files in the book in this way by substituting the file’s name, appending
.csv, and using the rest of the web address shown. Of course this is unnecessary because all the data
files are part of the alr4 package.

R is case sensitive, which means that a variable called weight is different from Weight, which in
turn is different from WEIGHT. Also, the command read.table would be different from READ.TABLE.
Path names are case-sensitive on Linux and Macintosh, but not on Windows.

Frustration Alert: Reading data into R or any other statistical package can be frustrating. Your
data may have blank rows and/or columns you do not remember creating. Typing errors, substituting
a capital “O” in place of a zero, can turn a column into a text variable. Odd missing value indicators
like N/A, or inconsistent missing value indicators, can cause trouble. Variable names with embedded
blanks or other non-standard characters like a hash-mark #, columns on a data file for comments, can
also cause problems. Just remember: it’s not you, this happens to everyone until they have read in a
few data sets successfully.
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0.6.3 Reading Excel Files

(see also Companion[2.1.3]) R is less friendly in working with Excel files2. The easiest approach is to
save your data as a “.csv” file, which is a plain text file, with the items in each row of the file separated
by commas. You can then read the “.csv” file with the command read.csv,

data <- read.csv("ais.csv", header=TRUE)

where once again the complete path to the file is required. There are other tools described in Compan-
ion[2.1.3] for reading Excel spreadsheets directly.

0.6.4 Saving Text and Graphs

The easiest way to save printed output is to select it, copy to the clipboard, and paste it into an editor
or word processing program. Be sure to use a monospaced-font like Courier so columns line up properly.
In R on Windows, you can select File→ Save to file to save the contents of the text window to a file.

The easiest way to save a graph in R on Windows or Macintosh is via the plot’s menu. Select
File→Save as→ filetype, where filetype is the format of the graphics file you want to use. You can
copy a graph to the clipboard with a menu item, and then paste it into a word processing document.

In all versions of R, you can also save files using a relatively complex method of defining a device,
Companion[7.4], for the graph. For example,

pdf("myhist.pdf", horizontal=FALSE, height=5, width=5)

hist(rnorm(100))

dev.off()

defines a device of type pdf to be saved in the file “myhist.pdf” in the current directory. It will consist
of a histogram of 100 normal random numbers. This device remains active until the dev.off command
closes the device. The default with pdf is to save the file in “landscape,” or horizontal mode to fill the

2A package called xlsx that can read Excel files directly. The package foreign contains functions to read many other
types of files created by SAS, SPSS, Stata and others.
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page. The argument horizontal=FALSE orients the graph vertically, and height and width to 5 makes
the plotting region a five inches by five inches square.

R has many devices available, including pdf, postscript, jpeg and others; see help(Devices)

for a list of devices, and then, for example, help(pdf) for a list of the (many) arguments to the pdf

command.

0.6.5 Normal, F , t and χ2 tables

alr does not include tables for looking up critical values and significance levels for standard distributions
like the t, F and χ2. These values can be computed with R or Microsoft Excel, or tables are easily
found by googling for example t table.

Table 1 lists the six commands that are used to compute significance levels and critical values for t,
F and χ2 random variables. For example, to find the significance level for a test with value −2.51 that
has a t(17) distribution, type into the text window

pt(-2.51,17)

[1] 0.01124

which returns the area to the left of the first argument. Thus the lower-tailed p-value is 0.011241, the
upper tailed p-value is 1− .012241 = .98876, and the two-tailed p-value is 2× .011241 = .022482.

Table 2 shows the functions you need using Excel.
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Table 1: Functions for computing p-values and critical values using R. These functions may have addi-
tional arguments useful for other purposes.

Function What it does
qnorm(p) Returns a value q such that the area to the left of q for a

standard normal random variable is p.
pnorm(q) Returns a value p such that the area to the left of q on a

standard normal is p.
qt(p, df) Returns a value q such that the area to the left of q on a

t(df) distribution equals q.
pt(q, df) Returns p, the area to the left of q for a t(df) distribution
qf(p, df1, df2) Returns a value q such that the area to the left of q on a

F (df1,df2) distribution is p. For example, qf(.95, 3, 20)

returns the 95% points of the F (3, 20) distribution.
pf(q, df1, df2) Returns p, the area to the left of q on a F (df1,df2) distri-

bution.
qchisq(p, df) Returns a value q such that the area to the left of q on a

χ2(df) distribution is p.
pchisq(q, df) Returns p, the area to the left of q on a χ2(df) distribution.
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Table 2: Functions for computing p-values and critical values using Microsoft Excel. The definitions for these
functions are not consistent, sometimes corresponding to two-tailed tests, sometimes giving upper tails, and
sometimes lower tails. Read the definitions carefully. The algorithms used to compute probability functions
in Excel are of dubious quality, but for the purpose of determining p-values or critical values, they should be
adequate; see Knüsel (2005) for more discussion.

Function What it does

normsinv(p) Returns a value q such that the area to the left of q for a
standard normal random variable is p.

normsdist(q) The area to the left of q. For example, normsdist(1.96)
equals 0.975 to three decimals.

tinv(p, df) Returns a value q such that the area to the left of −|q| and
the area to the right of +|q| for a t(df) distribution equals
q. This gives the critical value for a two-tailed test.

tdist(q, df, tails) Returns p, the area to the left of q for a t(df) distribution
if tails = 1, and returns the sum of the areas to the left of
−|q| and to the right of +|q| if tails = 2, corresponding to
a two-tailed test.

finv(p, df1, df2) Returns a value q such that the area to the right of q on
a F (df1, df2) distribution is p. For example, finv(.05, 3,

20) returns the 95% point of the F (3, 20) distribution.
fdist(q, df1, df2) Returns p, the area to the right of q on a F (df1,df2) distri-

bution.
chiinv(p, df) Returns a value q such that the area to the right of q on a

χ2(df) distribution is p.
chidist(q, df) Returns p, the area to the right of q on a χ2(df) distribution.



CHAPTER 1

Scatterplots and Regression

1.1 Scatterplots

The plot function is R can be used with little fuss to produce pleasing scatterplots that can be used for
homework problems and for many other applications. You can get also get fancier graphs using some
of plot’s many arguments; see Companion[Ch. 7].

A simple scatterplot as in alr[F1.1a] is drawn by:

library(alr4)

plot(dheight ~ mheight, data=Heights)

1
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All the data in the alr4 are present after you use the library(alr4) command. The first argument
to the plot function is a formula, with the vertical or y-axis variable to the left of the ~ and the
horizontal or x-axis variable to the right. The argument data=Heights tells R to get the data from the
Heights data frame.

This same graph can be obtained with other sets of arguments to plot:

plot(Heights$mheight, Heights$dheight)

This does not require naming the data frame as an argument, but does require the full name of the
variables to be plotted, including the name of the data frame. Variables or columns of a data frame are
specified using the $ notation in the above example.

with(Heights, plot(mheight, dheight))



CHAPTER 1. SCATTERPLOTS AND REGRESSION 3

This uses the very helpful with function (Companion[2.2.2]), to specify the data frame to be used in
the the command that followed, in this case the plot command.

This plot command does not match alr[F1.1a] exactly, as the plot in the book included non-
standard plotting characters, grid lines, a fixed aspect ratio of 1 and the same tick marks on both axes.
The script file for Chapter 1 gives the R commands to draw this plot. Companion[Ch. 7] describes
modification to R plots more generally.

alr[F1.1b] plots the rounded data:

plot(round(dheight) ~ round(mheight), Heights)

The figure alr[F1.2] is obtained from alr[F1.1a] by deleting most of the points. To draw this plot
we need to select points:

sel <- with(Heights,

(57.5 < mheight) & (mheight <= 58.5) |

(62.5 < mheight) & (mheight <= 63.5) |

(67.5 < mheight) & (mheight <= 68.5))

The result sel is a vector of values equal to either TRUE and FALSE. It is equal to TRUE if either
57.5 < mheight ≤ 58.5, or 62.5 < mheight ≤ 63.5 or 67.5 < mheight ≤ 68.5. The vertical bar | is the
logical “or” operator; type help("|") to get the syntax for other logical operators.

We can redraw the figure using

plot(dheight ~ mheight, data=Heights, subset=sel)

The subset argument can be used with many R functions to specify which observations to use. The
argument can be (1) a list of TRUE and FALSE, as it is here, (2) a list of row numbers or row labels, or (3)
if the argument were, for example, subset= -c(2, 5, 22), then all observations except row numbers
2, 5, and 22 would be used. Since !sel would covert all TRUE to FALSE and all FALSE to TRUE, the
specification

plot(dheight ~ mheight, data=Heights, subset= !sel)
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would plot all the observations not in the specified ranges.
alr[F1.3] adds several new features to scatterplots. the par function sets graphical parameters,

oldpar <- par(mfrow=c(1, 2))

meaning that the graphical window will hold an array of graphs with one row and two columns. This
choice for the window will be kept until either the graphical window is closed or it is reset using another
par command. See ?par for all the graphical parameters (see also Companion[7.1.2]).

To draw alr[F1.3] we need to find the equation of the line to be drawn, and this is done using
the lm command, the workhorse in R for fitting linear regression models. We will discuss this at much
greater length in the next few chapters, but for now we will simply use the function.

m0 <- lm(pres ~ bp, data=Forbes)

plot(pres ~ bp, data=Forbes, xlab="Boiling Point (deg. F)",

ylab="Pressure (in Hg)")

abline(m0)

plot(residuals(m0) ~ bp, Forbes, xlab="Boiling Point (deg. F)",

ylab="Residuals")

abline(a=0, b=0, lty=2)

par(oldpar)

The ols fit is computed using the lm function and assigned the name m0. The first plot draws the
scatterplot of pres versus bp. We add the regression line with the function abline. When the argument
to abline is the name of a regression model, the function gets the information needed from the model
to draw the ols line. The second use of plot draws the second graph, this time of the residuals from
model m0 on the vertical axis versus bp on the horizontal axis. A horizontal dashed line is added to this
graph by specifying intercept a equal to zero and slope b equal to zero. The argument lty=2 specifies
a dashed line; lty=1 would have given a solid line. The last command is unnecessary for drawing the
graph, but it returns the value of mfrow to its original state.

alr[F1.5] has two lines added to it, the ols line and the line joining the mean for each value of
Age. First we use the tapply function (see also Companion[8.4]) to compute the mean Length for
each Age,



CHAPTER 1. SCATTERPLOTS AND REGRESSION 5

(meanLength <- with(wblake, tapply(Length, Age, mean)))

1 2 3 4 5 6 7 8
98.34 124.85 152.56 193.80 221.72 252.60 269.87 306.25

Unpacking this complex command, (1) with is used to tell R to use the variables in the data frame
wblake; (2) the first argument of tapply is the variable of interest, the second argument gives the
grouping, and the third is the name of the function to be applied, here the mean function. The result is
saved as an object called meanLength, and because we included parentheses around the whole expression
the result is also printed on the screen.

plot(Age ~ Length, data=wblake)

abline(lm(Length ~ Age, data=wblake))

lines(1:8, meanLength, lty=2)

There are a few new features here. In the call to abline the regression was computed within the
command, not in advance. The lines command adds lines to an existing plot, joining the points
specified. The points have horizontal coordinates 1:8, the integers from one to eight for the Age groups,
and vertical coordinates given by meanLength as just computed.

alr[F1.7] adds a separate plotting character for each of the groups, and a legend. Here is how this
was drawn in R:

plot(Gain ~ A, turkey, xlab="Amount (percent of diet)",

ylab="Weight gain (g)", pch=S)

legend("bottomright", inset=0.02, legend=c("1 Control", "2 New source A",

"3 New source B"), cex=0.75, lty=1:3, pch=1:3, lwd=c(1, 1.5, 2))

S is a variable in the data frame with the values 1, 2, or 3, so setting pch=S sets the plotting character
to be a the plotting characters that are associated with these numbers . Similarly, setting col=S will set
the color of the plotted points to be different for each of the three groups; try plot(1:20, pch=1:20,

col=1:20) to see the first 20 plotting characters and colors. The first argument to legend sets the
location of the legend as the bottom right corner, and the inset argument insets the legend by 2%.
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The other arguments specify what goes in the legend. The lwd argument specifies the width of the lines
drawn in the legend.

1.4 Summary Graph

alr[F1.9] was drawn using the xyplot function in the lattice package. You could get an almost
equivalent plot using

oldpar <- par(mfrow=c(2, 2))

xs <- names(anscombe)[1:4]

ys <- names(anscombe)[5:8]

for (i in 1:4){

plot(anscombe[, xs[i]], anscombe[, ys[i]], xlab=xs[i], ylab=ys[i],

xlim=c(4,20), ylim=c(2, 16))

abline(lm( anscombe[, ys[i]] ~ anscombe[, xs[i]]))

}

This introduced several new elements: (1) mfrow=c(2, 2) specified a 2 × 2 array of plots; (2) xs and
ys are, respectively, the names of the predictor and ther response for each of the four plot; (3) a loop,
Companion[Sec. 8.3.2], was used to draw each of the plot; (4) columns of the data frame were accessed
by their column numbers, or in this case by their column names; (5) labels and limits for the axes are
set explicitly.

1.5 Tools for Looking at Scatterplots

alr[F1.10] adds a smoother to alr[F1.1a]. R has a wide variety of smoothers available, and all can
be added to a scatterplot. Here is how to add a loess smooth using the lowess function.

plot(dheight ~ mheight, Heights, cex=.1, pch=20)

abline(lm(dheight ~ mheight, Heights), lty=1)

with(Heights, lines(lowess(dheight ~ mheight, f=6/10, iter=1), lty=2))
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The lowess function specifies the response and predictor in the same way as lm. It also requires a
smoothing parameter, which we have set to 0.6. The argument iter also controls the behavior of the
smoother; we prefer to set iter=1, not the default value of 3.

1.6 Scatterplot Matrices

The R function pairs draws scatterplot matrices. To reproduce an approximation to alr[F1.11], we
must first transform the data to get the variables that are to be plotted, and then draw the plot.

names(fuel2001)

[1] "Drivers" "FuelC" "Income" "Miles" "MPC" "Pop" "Tax"

fuel2001 <- transform(fuel2001,

Dlic=1000 * Drivers/Pop,

Fuel=1000 * FuelC/Pop,

Income = Income/1000)

names(fuel2001)

[1] "Drivers" "FuelC" "Income" "Miles" "MPC" "Pop" "Tax"
[8] "Dlic" "Fuel"

We used the transform function to add the transformed variables to the data frame. Variables that
reuse existing names, like Income, overwrite the existing variable. Variables with new names, like Dlic,
are new columns added to the right of the data frame. The syntax for the transformations is similar to
the language C. The variable Dlic = 1000 × Drivers/Pop is the fraction of the population that has a
driver’s license times 1000. We could have alternatively computed the transformations one at a time,
for example

fuel2001$FuelPerDriver <- fuel2001$FuelC / fuel2001$Drivers
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Typing names(f) gives variable names in the order they appear in the data frame.
The pairs function draws scatterplot matrices:

pairs(~ Tax + Dlic + Income + log(Miles) + Fuel, data=fuel2001)

We specify the variables we want to appear in the plot using a one-sided formula, which consists of a
“ ~ ” followed by the variable names separated by + signs. The advantage of the one-sided formula is
that we can transform variables “on the fly” in the command, as we have done here using log(Miles)

rather than Miles.
In the pairs command you could replace the formula with a matrix or data frame, so

pairs(fuel2001[, c(7, 9, 3, 6)])

would give the scatterplot matrix for columns 7, 9, 3, 6 of the data frame fuel2001.
The function scatterplotMatrix in the car package provides a more elaborate version of scatterplot

matrices. The help page ?scatterplotMatrix, or Companion[3.3.2], can provide information.

1.7 Problems

1.1 R lets you plot transformed data without saving the transformed values:

plot(log(fertility) ~ log(ppgdp), UN11)

1.2 For the smallmouth bass data, you will need to compute the mean and sd of Length and sample
size for each value of Age. You can use tapply command three times for this, along with the
mean, sd and length functions.

1.3 Use your mouse to change the aspect ratio in a plot by changing the shape of the plot’s window.



CHAPTER 2

Simple Linear Regression

Most of alr[Ch. 2] fits simple linear regression from a few summary statistics, and we show how to
do that using R below. While this is useful for understanding how simple regression works, in practice
a higher-level function will be used to fit regression models. In R, this is the function lm (see also
Companion[Ch. 4]).

For the Forbes data used in the chapter, the simple regression model can be fit using

m1 <- lm(lpres ~ bp, data=Forbes)

The first argument to lm is a formula. Here lpres ~ bp uses the name on the left of the ˜ as the
response and the name or names to the right as predictors. The data argument tells R where to find the
data. Because of the assignment <- the result of this command is assigned the value m1, but nothing is
printed. If you print this object, you get the coefficient estimates:

9
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m1

Call:
lm(formula = lpres ~ bp, data = Forbes)

Coefficients:
(Intercept) bp

-42.138 0.895

The summary method applied to the regression object gives more complete information:

summary(m1)

Call:
lm(formula = lpres ~ bp, data = Forbes)

Residuals:
Min 1Q Median 3Q Max

-0.3222 -0.1447 -0.0666 0.0218 1.3598

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -42.1378 3.3402 -12.6 2.2e-09
bp 0.8955 0.0165 54.4 < 2e-16

Residual standard error: 0.379 on 15 degrees of freedom
Multiple R-squared: 0.995, Adjusted R-squared: 0.995
F-statistic: 2.96e+03 on 1 and 15 DF, p-value: <2e-16

This output provides a summary of the size of the residuals that I have never found helpful. All the
other output is described in this chapter of alr except the Adjusted R-squared, which differs from R2
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by a function of the sample size, and the F-statistic, which is discussed in Chapter 6. The Residual

standard error is σ̂.
The object m1 created above includes many other quantities you may find useful:

names(m1)

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

Some of these are pretty obvious, like

m1$coefficients

(Intercept) bp
-42.1378 0.8955

but others are perhaps more obscure. The help page help(lm) provides more information. Similarly,
you can save the output from summary as an object:

s1 <- summary(m1)

names(s1)

[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"

Some of these are obvious, such as s1$r.squared, and others not so obvious; print them to see what
they are!
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2.2 Least Squares Criterion

All the sample computations shown in alr are easily reproduced in R. First, get the right variables
from the data frame, and compute means.

Forbes1 <- Forbes[, c(1, 3)] # select columns 1 and 3

print(fmeans <- colMeans(Forbes1))

bp lpres
203.0 139.6

The colMeans function computes the mean of each column of a matrix or data frame; the rowMeans

function does the same for row means.
Next, we need the sums of squares and cross-products, and R provides several tools for this. Since

the sample covariance matrix is just (n− 1) times the matrix of sums of squares and cross-products, we
can use the function cov:

(fcov <- (17 - 1) * cov(Forbes1))

bp lpres
bp 530.8 475.3
lpres 475.3 427.8

Alternatively, the function scale can be used to subtract the mean from each column of a matrix or
data frame, and then crossprod can be used to get the cross-product matrix:

crossprod(scale(Forbes1, center=TRUE, scale=FALSE))

bp lpres
bp 530.8 475.3
lpres 475.3 427.8



CHAPTER 2. SIMPLE LINEAR REGRESSION 13

All the regression summaries depend only on the sample means and on the sample sums of squares
fcov just computed. Assign names to the components to match the discussion in alr, and do the
computations:

xbar <- fmeans[1]

ybar <- fmeans[2]

SXX <- fcov[1,1]

SXY <- fcov[1,2]

SYY <- fcov[2,2]

betahat1 <- SXY/SXX

betahat0 <- ybar - betahat1 * xbar

print(c(betahat0 = betahat0, betahat1 = betahat1),

digits = 4)

betahat0.lpres betahat1
-42.1378 0.8955

The collect function c was used to collect the output into a vector for nice printing. Compare to the
estimates from lm given previously.

2.3 Estimating the Variance σ2

We can use the summary statistics computed previously to get the RSS and the estimate of σ2:

RSS <- SYY - SXY^2/SXX

sigmahat2 <- RSS/15

sigmahat <- sqrt(sigmahat2)

c(RSS=RSS, sigmahat2=sigmahat2, sigmahat=sigmahat)

RSS sigmahat2 sigmahat
2.1549 0.1437 0.3790
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Using the regression object:

c(RSS = m1$df.residual * sigmaHat(m1)^2,

sigmathat2= sigmaHat(m1)^2,

sigmahat = sigmaHat(m1))

RSS sigmathat2 sigmahat
2.1549 0.1437 0.3790

The sigmaHat is a helper function is in the car package. It takes a regression object as its argument,
and returns σ̂.

2.5 Estimated Variances

The standard errors of coefficient estimates can be computed from the fundamental quantities already
given. The helper function vcov provides the variances and covariances of the estimated coefficients,

vcov(m1)

(Intercept) bp
(Intercept) 11.15693 -0.0549313
bp -0.05493 0.0002707

The diagonal elements are equal to the squared standard errors of the coefficient estimates and the
off-diagonal elements are the covariances between the coefficient estimates. You can turn this or any
covariance matrix into a correlation matrix:

cov2cor(vcov(m1))

(Intercept) bp
(Intercept) 1.0000 -0.9996
bp -0.9996 1.0000
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This is the matrix of correlations between the estimates.
You can also extract the standard errors from the vcov output, but the method is rather obscure:

(ses <- sqrt(diag(vcov(m1))))

(Intercept) bp
3.34020 0.01645

This used the sqrt function for square roots and the diag function to extract the diagonal elements of
a matrix. The result is a vector, in this case of length 2.

2.6 Confidence Intervals and t-Tests

Confidence intervals and tests can be computed using the formulas in alr[2.6], in much the same way
as the previous computations were done.

To use lm we need the estimates and their standard errors ses previously computed. The last item
we need to compute confidence intervals is the correct multiplier from the t distribution. For a 95%
interval, the multiplier is

(tval <- qt(1-.05/2, m1$df))

[1] 2.131

The qt command computes quantiles of the t-distribution; similar function are available for the normal
(qnorm), F (qF), and other distributions; see Section 0.6.5. The function qt finds the value tval so
that the area to the left of tval is equal to the first argument to the function. The second argument is
the degrees of freedom, which can be obtained from m1 as shown above.

Finally, the confidence intervals for the two estimates are:

betahat <- c(betahat0, betahat1)

data.frame(Est = betahat,

lower=betahat - tval * ses,

upper=betahat + tval * ses)
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Est lower upper
lpres -42.1378 -49.2572 -35.0183

0.8955 0.8604 0.9306

By creating a data frame, the values get printed in a nice table.
R includes a function called confint that computes the confidence intervals for you, and

confint(m1, level=.95)

2.5 % 97.5 %
(Intercept) -49.2572 -35.0183
bp 0.8604 0.9306

gives the same answer computed above. The confint function works with many other models in R, and
is the preferred way to compute confidence intervals. For other than linear regression, it uses a more
sophisticated method for computing confidence intervals.

Getting tests rather than intervals is similar.

2.7 The Coefficient of Determination, R2

For simple regression R2 is just the square of the correlation between the predictor and the response.
It can be computed as in alr, or using the cor function,

SSreg <- SYY - RSS

print(R2 <- SSreg/SYY)

[1] 0.995

cor(Forbes1)

bp lpres
bp 1.0000 0.9975
lpres 0.9975 1.0000
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and 0.997478172 = 0.9949627.

Prediction and Fitted Values

Predictions and fitted values can be fairly easily computed given the estimates of the coefficients. For
example, predictions at the original values of the predictor are given by

betahat0 + betahat1 * Forbes$bp

[1] 132.0 131.9 135.1 135.5 136.4 136.9 137.8 137.9 138.2 138.1 140.2 141.1
[13] 145.5 144.7 146.5 147.6 147.9

The predict command is a very powerful helper function for getting fitted and predictions from a
model fit with lm, or, indeed, most other models in R. Here are the important arguments1:

predict(object, newdata, se.fit = FALSE,

interval = c("none", "confidence", "prediction"),

level = 0.95)

The object argument is the name of the regression model that has already been computed. The
newdata argument is a data frame of values for which you want predictions or fitted values; if omitted
the default is the data used to fit the model. The interval argument specifies the type of interval you
want to compute. Three values are shown and any other value for this argument will produce an error.
The default is "none", the first option shown. The level of the intervals will be 95% unless the level

argument is changed.
In the simplest case, we have

predict(m1)

1You can see all the arguments by typing args(predict.lm).
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1 2 3 4 5 6 7 8 9 10 11 12 13
132.0 131.9 135.1 135.5 136.4 136.9 137.8 137.9 138.2 138.1 140.2 141.1 145.5

14 15 16 17
144.7 146.5 147.6 147.9

returning the fitted values (or predictions) for each observation. If you want predictions for particular
values, say bp = 210 and 220, use the command

predict(m1, newdata=data.frame(bp=c(210,220)),

interval="prediction", level=.95)

fit lwr upr
1 145.9 145.0 146.8
2 154.9 153.8 155.9

The newdata argument is a powerful tool in using the predict command, as it allows computing
predictions at arbitrary points. The argument must be a data frame, with variables having the same
names as the variables used in the mean function. For the Forbes data, the only term beyond the
intercept is for bp, and so only values for bp must be provided. The argument intervals="prediction"
gives prediction intervals at the specified level in addition to the point predictions; other intervals are
possible, such as for fitted values; see help(predict.lm) for more information.

Additional arguments to predict will compute additional quantities. For example, se.fit will also
return the standard errors of the fitted values (not the standard error of prediction). For example,

predvals <- predict(m1, newdata=data.frame(bp=c(210, 220)),

se.fit=TRUE)

predvals

$fit
1 2

145.9 154.9



CHAPTER 2. SIMPLE LINEAR REGRESSION 19

$se.fit
1 2

0.1480 0.2951

$df
[1] 15

$residual.scale
[1] 0.379

The result predvals is a list (Companion[2.3.3]). You could get a more compact representation by
typing

as.data.frame(predvals)

fit se.fit df residual.scale
1 145.9 0.1480 15 0.379
2 154.9 0.2951 15 0.379

You can do computations with these values. For example,

(150 - predvals$fit)/predvals$se.fit

1 2
27.6 -16.5

computes the difference between 150 and the fitted values, and then divides each by its standard error
of the fitted value. The predict helper function does not compute the standard error of prediction,
but you can compute it using equation alr[E2.26],

se.pred <- sqrt(predvals$residual.scale^2 + predvals$se.fit^2)
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2.8 The Residuals

The command residuals computes the residuals for a model. A plot of residuals versus fitted values
with a horizontal line at 0 on the vertical axis is given by

plot(predict(m1), residuals(m1))

abline(h=0,lty=2)

We will have more elaborate uses of residuals later in the Primer. If you apply the plot helper
function to the regression model m1 by typing plot(m1), you will also get the plot of residuals versus
fitted values, along with a few other plots that are not discussed in alr. Finally, the car function
residualPlots can also be used:

residualPlots(m1)

We will discuss this last function in Chapter 9 of this primer.

2.9 Problems

2.1 The point of this problem is to get you to fit a regression “by hand”, basically by using R as a
graphing calculator. For 2.1.1, use the plot function. For 2.1.2, you can compute the summary
statistics and the estimates as described earlier in primer. You can the the fitted line to your plot
using the abline function. For 2.1.3, compute the statistics using the formulas, and compare to
the values from the output of lm for these data.

2.4 Use the abline to add lines to a plot. An easy way to identify points in a plot is to use the
identify command:

plot(bigmac2009 ~ bigmac2003, UBSprices)

identify(UBSprices$bigmac2003, UBSprices$bigmac2009, rownames(UBSprices))



CHAPTER 2. SIMPLE LINEAR REGRESSION 21

You can then click on the plot, and the label of the nearest point will be added to the plot.
To stop identifying, either click the right mouse button and select “Stop”, or select
“Stop” from the plot’s menu.

2.7 You can add a new variable u1 to the data set:

Forbes$u1 <- 1/( (5/9)*Forbes$bp + 255.37)

For 2.7.4 you need to fit the same model to both the Forbes and Hooker data sets. You can then
use the predict command to get the predictions for Hooker’s data from the fit to Forbes’ data,
and vice versa.

2.10 In the cathedral data file for Problem 2.10.6 the variable Type is a text variable. You can turn
a text variable into a numeric variable with values 1 and 2 using

cathedral$group <- as.numeric(cathedral$Type)

If you want a variable of 0s and 1s, use

cathedral$group <- as.numeric(cathedral$Type) - 1

To do the problem you need to delete the last 7 rows of the file. Find out how many rows there
are:

dim(cathedral)

[1] 25 4

and then delete the last 7:

cathedral1 <- cathedral[-(19:25), ]

Here (19:25) generates the integers from 19 to 25, and the minus sign tells R to remove these
rows. Specific columns, the second subscript, are not given, so the default is to use all the columns.
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2.14 Use the sample function to to get the construction sample:

construction.sample <- sample(1:dim(Heights)[1], floor(dim(Heights)[1]/3))

This will choose the rows to be in the construction sample. Then, fit

m1 <- lm(dheight ~ mheight, Heights, subset=construction.sample)

You can get predictions for the remaining (validation) sample, like this:

predict(m1, newdata = Heights[-construction.sample,])

2.17 The formula for regression through the origin explicitly removes the intercept, y ~ x - 1.
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Multiple Regression

3.1 Adding a Term to a Simple Linear Regression Model

The added-variable plots show what happens when we add a second regressor to a simple regression
model. Here are the steps. First, fit the regression of the response on the first regressor, and keep the
residuals:

m1 <- lm(lifeExpF ~ log(ppgdp), UN11)

r1 <- residuals(m1)

r1 is the part of the response not explained by the first regressor.
Next, fit the regression of the second regressor on the first regressor and keep these residuals:

23
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m2 <- lm(fertility ~ log(ppgdp), UN11)

r2 <- residuals(m2)

r2 is the part of the second regressor that is not explained by the first regressor.
The added variable plot is r1 versus r2. The regression associated with the added variable plot:

m4 <- lm(resid(m1) ~ resid(m2))

has intercept 0, slope equal to the slope for the second regressor in the regression with two regressors,
and the other properties described in alr. The resid function is the same as the residuals function.

3.1.1 Explaining Variability

3.1.2 Added-Variable Plots

The avPlots function in the car package can be used to draw added-variable plots. Introducing this
function here is a little awkward because it requires fitting a regression model first, a topic covered later
in this chapter.

library(alr4)

m3 <- lm(lifeExpF ~ log(ppgdp) + fertility, data=UN11)

avPlots(m3, id.n=0)

The first command loads the alr4 package, which in turn loads the car. The next command sets up the
linear regression model using lm; the only new feature is the formula has two terms on the right rather
than one. The avPlots function in the car package takes the regression model as its first argument.
The default of the function is to display the added-variable plot for each variable on the right side of
the formula, so we get two plots here. The argument id.n=0 is used to suppress point labeling. By
default avPlots will label several extreme points in the plot using row labels. In these plots they are
rather distracting because the country names are long relative to the size of the graph.

Added-variable plots are discussed in Companion[6.2.3]. Point labeling is discussed in Compan-
ion[3.5].
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Figure 3.1: Added-variable plots for each of the two regressors in the regression of lifeExpF on
log(PPgdp)) and fertility.
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3.2 The Multiple Linear Regression Model

3.3 Regressors and Predictors

All of the types of regressors created from predictros described in alr are easy to create and use in R.
For now we discuss only a few of them:

Transformations of predictors Often you can create a transformation in a fitted model without
actually adding the transformed values to a data file. For example, if you have a data frame called
mydata with variables y, x1 and x2, you can compute the regression with terms x1 and log(x2)

by either of the following:

m1 <- lm(y ~ x1 + log(x2), mydata)

mydata <- transform(mydata, logx2=log(x2))

m2 <- lm(y ~ x1 + logx2, mydata)

The first form is preferable because R will recognize the x2 as the predictor rather than logx2 as
the predictor. The transform function added the transformed value to mydata. If you want to
use the 1/y as the response, you could fit

m3 <- lm(I(1/y) ~ x1 + log(x2), mydata)

The identity function I forces the evaluation of its contents using usual arithmetic, rather than
treating the slash / using its special meaning in formulas.

Polynomials can be formed using the I function:

m4 <- lm( y ~ x1 + I(x1^2) + I(x1^3), mydata)

Even better is to use the poly function:

m4 <- lm( y ~ poly(x1, 3, raw=TRUE), mydata)
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If you don’t set raw=TRUE the poly function creates orthogonal polynomials with superior numer-
ical properties, alr[5.3].

Table 3.1 in alr[3.3] gives the “usual” summary statistics for each of the interesting terms in a data
frame. Oddly enough, the writers of R don’t seem to think these are the standard summaries. Here is
what you get from R:

fuel2001 <- transform(fuel2001,

Dlic=1000 * Drivers/Pop,

Fuel=1000 * FuelC/Pop,

Income = Income,

logMiles = log(Miles))

f <- fuel2001[,c(7, 8, 3, 10, 9)] # new data frame

summary(f)

Tax Dlic Income logMiles Fuel
Min. : 7.5 Min. : 700 Min. :20993 Min. : 7.34 Min. :318
1st Qu.:18.0 1st Qu.: 864 1st Qu.:25323 1st Qu.:10.51 1st Qu.:575
Median :20.0 Median : 909 Median :27871 Median :11.28 Median :626
Mean :20.2 Mean : 904 Mean :28404 Mean :10.91 Mean :613
3rd Qu.:23.2 3rd Qu.: 943 3rd Qu.:31208 3rd Qu.:11.63 3rd Qu.:667
Max. :29.0 Max. :1075 Max. :40640 Max. :12.61 Max. :843

We created a new data frame f using only the variables of interest. Rather than giving the standard
deviation for each variable, the summary command provides first and third quartiles. You can get the
standard deviations easily enough, using

apply(f, 2, sd)

Tax Dlic Income logMiles Fuel
4.545 72.858 4451.637 1.031 88.960
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The apply function tells the program to apply the third argument, the sd function, to the second
dimension, or columns, of the matrix or data frame given by the first argument. We are not the first to
wonder why R doesn’t compute SDs in the summary command. The psych package, which you would
need to install from CRAN, contains a function called describe that will compute the usual summary
statistics and some unusual ones too!

3.4 Ordinary Least Squares

Sample correlations, alr[T3.2], are computed using the cor command,

round(cor(f), 4)

Tax Dlic Income logMiles Fuel
Tax 1.0000 -0.0858 -0.0107 -0.0437 -0.2594
Dlic -0.0858 1.0000 -0.1760 0.0306 0.4685
Income -0.0107 -0.1760 1.0000 -0.2959 -0.4644
logMiles -0.0437 0.0306 -0.2959 1.0000 0.4220
Fuel -0.2594 0.4685 -0.4644 0.4220 1.0000

The sample covariance matrix is computed using either var or cov, so

cov(f)

Tax Dlic Income logMiles Fuel
Tax 20.6546 -28.425 -216.2 -0.2048 -104.89
Dlic -28.4247 5308.259 -57070.5 2.2968 3036.59
Income -216.1725 -57070.454 19817074.0 -1357.2076 -183912.57
logMiles -0.2048 2.297 -1357.2 1.0620 38.69
Fuel -104.8944 3036.591 -183912.6 38.6895 7913.88

We will compute the matrix (X′X)−1. To start we need the matrix X, which has 51 rows, one
column for each regressor, and one column for the intercept. Here are the computations:
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f$Intercept <- rep(1, 51) # a column of ones added to f

X <- as.matrix(f[, c(6, 1, 2, 3, 4)]) # reorder and drop fuel

xtx <- t(X) %*% X

xtxinv <- solve(xtx)

xty <- t(X) %*% f$Fuel

print(xtxinv, digits=4)

Intercept Tax Dlic Income logMiles
Intercept 9.022e+00 -2.852e-02 -4.080e-03 -5.981e-05 -2.787e-01
Tax -2.852e-02 9.788e-04 5.599e-06 4.263e-08 2.312e-04
Dlic -4.080e-03 5.599e-06 3.922e-06 1.189e-08 7.793e-06
Income -5.981e-05 4.263e-08 1.189e-08 1.143e-09 1.443e-06
logMiles -2.787e-01 2.312e-04 7.793e-06 1.443e-06 2.071e-02

The first line added a column to the f data frame that consists of 51 copies of the number 1. The
function as.matrix converted the reordered data frame into a matrix X. The next line computed
X′X, using the function t to get the transpose of a matrix, and %*% for matrix multiply. The solve

function returns the inverse of is argument; it is also used to solve linear equations if the function has
two arguments.

The estimates and other regression summaries can be be computed, based on these sufficient statis-
tics:

xty <- t(X) %*% f$Fuel

betahat <- xtxinv %*% xty

betahat

[,1]
Intercept 154.192845
Tax -4.227983
Dlic 0.471871
Income -0.006135
logMiles 26.755176
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As with simple regression the function lm is used to automate the fitting of a multiple linear regression
mean function. The only difference between the simple and multiple regression is the formula:

m1 <- lm(formula = Fuel ~ Tax + Dlic + Income + logMiles,

data = f)

summary(m1)

Call:
lm(formula = Fuel ~ Tax + Dlic + Income + logMiles, data = f)

Residuals:
Min 1Q Median 3Q Max

-163.14 -33.04 5.89 31.99 183.50

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 154.19284 194.90616 0.79 0.43294
Tax -4.22798 2.03012 -2.08 0.04287
Dlic 0.47187 0.12851 3.67 0.00063
Income -0.00614 0.00219 -2.80 0.00751
logMiles 26.75518 9.33737 2.87 0.00626

Residual standard error: 64.9 on 46 degrees of freedom
Multiple R-squared: 0.51, Adjusted R-squared: 0.468
F-statistic: 12 on 4 and 46 DF, p-value: 9.33e-07

3.5 Predictions, Fitted Values and Linear Combinations

Predictions and fitted values for multiple regression use the predict command, just as for simple linear
regression. If you want predictions for new data, you must specify values for all the terms in the mean
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function, apart from the intercept, so for example,

predict(m1, newdata=data.frame(

Tax=c(20, 35), Dlic=c(909, 943), Income=c(16.3, 16.8),

logMiles=c(15, 17)))

1 2
899.8 905.9

will produce two predictions of future values for the values of the regressors indicated.

3.6 Problems

For these problems you will mostly be working with added-variable plots, outlined earlier, and working
with the lm function to do ols fitting. The helper functions predict get predictions, residuals get
the residuals, and confint compute confidence intervals for coefficient estimates.
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Interpretation of Main Effects

4.1 Understanding Parameter Estimates

4.1.1 Rate of Change

alr[F4.1] is an example of an effects plot, used extensively in alr to help visualize the role of individual
regressors in a fitted model. The idea is particularly simple when all the regressors in a regression
equation are predictors:

1. Get a fitted model like
ŷ = β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂pxp

32
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2. The effects plot for the first predictor X1 has X1 on its horizontal axis, and its vertical axis is
given by

β̂0 + β̂1x1 + β̂2x̄2 + · · ·+ β̂px̄p

All predictors except for X1 are fixed at their sample means.

The effects package in R draws effects plots. This package is automatically loaded by the li-

brary(alr4) command. The plot shown in alr[F4.1] can be drawn as

fuel2001$Dlic <- 1000*fuel2001$Drivers/fuel2001$Pop

fuel2001$Fuel <- 1000*fuel2001$FuelC/fuel2001$Pop

fuel2001$Income <- fuel2001$Income/1000

fuel1 <- lm(formula = Fuel ~ Tax + Dlic + Income + log(Miles),

data = fuel2001)

plot(Effect("Tax", fuel1))
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The first three lines above create the data set, the next line fits the regression model, and the next line
draws the plot. First, the Effect method is called with the name of the predictor of interest in quotes,
here "Tax", and then the name of the regression model, here fuel1. The output from this function is
then input to the plot command, which is written to work with the output from Effect1 The curved
shaded area on the plot displays pointwise 95% confidence intervals.

4.1.3 Interpretation Depends on Other Terms in the Mean Function

In alr[T4.1], Model 3 is overparameterized. R will print the missing value symbol NA for regressors that
are linear combinations of the regressors already fit in the mean function, so they are easy to identify
from the printed output.

BGSgirls$DW9 <- BGSgirls$WT9-BGSgirls$WT2

BGSgirls$DW18 <- BGSgirls$WT18-BGSgirls$WT9

BGSgirls$DW218 <- BGSgirls$WT18-BGSgirls$WT2

m1 <- lm(BMI18 ~ WT2 + WT9 + WT18 + DW9 + DW18, BGSgirls)

m2 <- lm(BMI18 ~ WT2 + DW9 + DW18 + WT9 + WT18, BGSgirls)

m3 <- lm(BMI18 ~ WT2 + WT9 + WT18 + DW9 + DW18, BGSgirls)

summary(m3)

Call:
lm(formula = BMI18 ~ WT2 + WT9 + WT18 + DW9 + DW18, data = BGSgirls)

Residuals:
Min 1Q Median 3Q Max

-3.104 -0.743 -0.124 0.832 4.348

1The effects package contains three functions names effect, Effect, and allEffects that all do basically the same
thing, but with somewhat different syntax. The function Effect with a capital E is the easiest to use and is discussed
here, the others are discussed on the help page ?Effect.
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Coefficients: (2 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.3098 1.6552 5.02 4.2e-06
WT2 -0.3866 0.1515 -2.55 0.013
WT9 0.0314 0.0494 0.64 0.527
WT18 0.2874 0.0260 11.04 < 2e-16
DW9 NA NA NA NA
DW18 NA NA NA NA

Residual standard error: 1.33 on 66 degrees of freedom
Multiple R-squared: 0.777, Adjusted R-squared: 0.767
F-statistic: 76.7 on 3 and 66 DF, p-value: <2e-16

car has a function for comparing the regression coefficient estimates from different models:

compareCoefs(m1, m2, m3, se=TRUE)

Call:
1:"lm(formula = BMI18 ~ WT2 + WT9 + WT18 + DW9 + DW18, data = BGSgirls)"
2:"lm(formula = BMI18 ~ WT2 + DW9 + DW18 + WT9 + WT18, data = BGSgirls)"
3:"lm(formula = BMI18 ~ WT2 + WT9 + WT18 + DW9 + DW18, data = BGSgirls)"

Est. 1 SE 1 Est. 2 SE 2 Est. 3 SE 3
(Intercept) 8.3098 1.6552 8.3098 1.6552 8.3098 1.6552
WT2 -0.3866 0.1515 -0.0678 0.1275 -0.3866 0.1515
WT9 0.0314 0.0494 0.0314 0.0494
WT18 0.2874 0.0260 0.2874 0.0260
DW9 0.3189 0.0386
DW18 0.2874 0.0260

It shows a blanks for coefficients not estimated. You can suppress the standard errors by using se=FALSE.
If you are using the output of a regression as the input to some other computation, you may want to

check to see if the model was overparameterized or not. If you have fit a model called, for example, m2,
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then the value of m2$rank will be the number of regressors actually fit in the mean function, including
the intercept, if any. It is also possible to determine which of the regressors specified in the mean
function were actually fit, but the command for this is obscure:

> m2$qr$pivot[1:m2$qr$rank]

will return the indices of the regressors, starting with the intercept, that were estimated in fitting the
model.

4.1.5 Colinearity

For a set of regressors with observed values given by the columns of X, we diagnose colinearity if the
square of the multiple correlation between one of the columns, say X1 and the remaining columns, say
X2, R2

X1,X2
, is large enough. A variance inflation factor is defined as v = 1/(1 − R2

X1,X2
), and these

values are more often available in computer packages, including the vif command in the car package.
If v is a variance inflation factor, then (v − 1)/v is the corresponding value of the squared multiple
correlation.

4.1.6 Regressors in Logarithmic Scale

Effects plots should ordinarily be drawn using predictors, not the regressors created from them. An
example is alr[F4.4b], drawn with the simple command

plot(Effect("Miles", fuel1), grid=TRUE, rug=TRUE)
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Miles effect plot
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We get a curve because the horizontal axis is the predictor, not its logarithm. The plot function
arguments grid add grid lines, and rug=TRUE adds a “rug plot” which indicates where the observed
values of Miles fall on the horizontal axis.

Producing a slightly more complicated version of alr[F4.3a], which uses the regressor and not the
predictor, is

plot(Effect("Miles", fuel1),

transform.x=list(Miles=c(trans=log, inverse=exp)),

ticks.x=list(at=round(exp(7:13))), grid=TRUE, rotx=45)
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Miles effect plot
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The call to Effect is the same, but additional arguments are needed in the call to plot: transform.x
tells to transform Miles on the horizontal axis to its logarithm; you must also specify the inverse of the
log-function. Finally, you need to tell the function where to draw the tick marks. Since log(Miles) is
between about 7 and 13, the ticks are found by exponentiating these values and then rounding them.
The argument rotx=45 rotates the labels on the horizontal axis by 45 degrees so the numbers do not
overlap. See ?plot.eff to see all the arguments.

4.6 Problems

4.1 To compute transformed values for this problem and the next problem, you can use statements
like this:

BGSgirls$ave <- with(BGSgirls, (WT9 + WT9 + WT18)/3)
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4.11 4.11.1 To generate 100 standard normal random deviates:

x <- rnorm(100)

To generate deviates with mean µ = 5 and standard deviation σ = 3,

x <- 5 + 3 * rnorm(100)

4.11.4 To fit a linear model excluding all cases with |x| < 2/3:

m1 <- lm(y ~ x, subset = abs(x) > 2/3)

To fit to only these cases, use

m2 <- update(m1, subset = !(abs(x) > 2/3))

The exclamation point is the same as “not”.



CHAPTER 5

Complex Regressors

5.1 Factors

A factor is a qualitative variable with say a levels or groups. It will generally be represented by a − 1
dummy variables. In models with no intercept, a dummy variables may be required. In alr[5.1.1] the
dummy variables are defined using the following rules:

1. If a factor A has a levels, create a dummy variables U1, . . . , Ua, such that Uj has the value one
when the level of A is j, and value zero everywhere else.

2. Obtain a set of a − 1 dummy variables to represent factor A by dropping one of the dummy
variables. Using the default coding in R, the first dummy variable U1 is dropped, while in SAS

40
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and SPSS and STATA the last dummy variable is dropped.

Most of the discussion in alr assumes the R default for defining dummy variables. To complicate matters
further other codings for the dummy variables are possible, but are not generally used by statistical
packages. R has a facility to change the coding to be anything you want (see also Companion[4.6]).

The factor command is used to convert a numeric variable or a vector of character strings into a
factor. The command with all its arguments is

args(factor)

function (x = character(), levels, labels = levels, exclude = NA,
ordered = is.ordered(x), nmax = NA)

NULL

The argument x is the name of the variable to be turned into a factor, and is the only required argument.
The argument levels is a vector of the names of the levels of x; if you don’t specify the levels, then
the program will use all the unique values of x, sorted in alphabetical order. Thus you will want to use
the levels argument if the levels of a factor are, for example, “Low”, “Medium” and “High” because
by default factor will reorder them as “High,” “Low” and “Medium.” You can avoid this by setting
levels=c("Low","Medium","High"). The next optional argument labels allows you to change the
labels for the levels, so, for example, if the levels of the factor are 1, 2 and 3, you can change them with
the argument labels=c("Low","Medium","High").

Suppose n = 10, and you have a variable z that is to become a factor. Suppose z was entered to
have numeric values:

z <- c(2, 3, 4, 2, 3, 4, 3, 3, 2, 2)

summary(z)

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.0 2.0 3.0 2.8 3.0 4.0

class(z)
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[1] "numeric"

The class of z is numeric, regular numbers. The summary of a numeric vector includes the minimum,
maximum, mean and other statistics.

You can convert z to a factor using

z.factor <- factor(z)

summary(z.factor)

2 3 4
4 4 2

class(z.factor)

[1] "factor"

The summary for a factor is the number of observations at each level. You can change the labels for
the levels of the factor:

z.factor <- factor(z, labels=c("Group1", "Group2", "Group3"))

summary(z.factor)

Group1 Group2 Group3
4 4 2

class(z.factor)

[1] "factor"

You can convert a factor back to a vector of numbers:

as.numeric(z.factor)
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[1] 1 2 3 1 2 3 2 2 1 1

where the numbers are the level numbers, starting with 1.
In the datasets in the alr4 factors will generally have been stored as factors, so you won’t need to

specify them as factors. You can always find out about a factor as follows:

class(UN11$group)

[1] "factor"

levels(UN11$group)

[1] "oecd" "other" "africa"

R uses the first level of a factor as a baseline group, but this is not always desirable. There are many
ways to change this. Here are two alternatives that use the relevel and the factor commands.

levels(relevel(z.factor, "Group3"))

[1] "Group3" "Group1" "Group2"

levels(factor(z.factor, levels=c("Group2", "Group3", "Group1")))

[1] "Group2" "Group3" "Group1"

5.1.1 One-Factor Models

alr[5.1] displays a boxplot with particular points labeled. The Boxplot function in the car package,
with a capital “B”, makes this easy:

Boxplot(lifeExpF ~ group, data=UN11, id.n=2)
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The argument id.n=2 identifies up to 2 points in each boxplot and labels them. This argument is
available in most of the plotting methods in the car package. The method that is used to identify
points depends on the plot, and can be changed using other arguments. See ?showLabels.

Here is the code that generates the dummy variables for group for the first 10 rows of the UN11 data:

head(model.matrix(~ -1 + group, UN11), 10)

groupoecd groupother groupafrica
Afghanistan 0 1 0
Albania 0 1 0
Algeria 0 0 1
Angola 0 0 1
Anguilla 0 1 0
Argentina 0 1 0
Armenia 0 1 0
Aruba 0 1 0
Australia 1 0 0
Austria 1 0 0

The magic command model.matrix returns the regressors generated by the variables in the formula
given as its argument. By putting the -1 in the formula the intercept is excluded so all the dummy
variables for group are displayed. Try it without the -1. The head command prints the first few rows
of a matrix or data frame, here the first 10. There is also a tail command to print the last few, and a
some command, in the car package, to print a few rows selected at random.

alr[F5.2] has lines fitted separately to each level of group. The scatterplot function in the car

package makes this easy:

scatterplot(lifeExpF ~ log(ppgdp)| group, data=UN11,

smooth=FALSE, boxplots=FALSE,

ylab="Female Life Expectancy")
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The plot is “conditioned on” the variable to the right of the |. scatterplot has defaults that we
have defeated here: boxplots=FALSE suppresses marginal boxplots; smooth=FALSE suppresses fitting
smoothers. Try drawing the plot without these two arguments (see also Companion[3.2.1]).

5.1.2 Adding a Continuous Predictor

Here is the R code that will give an approximation to alr[F5.3]. First, fit the regression model,

m1 <- lm(lifeExpF ~ group * log(ppgdp), UN11)

Then, draw the plot

plot(Effect(c("group", "ppgdp"), m1, default.levels=100),

rug=FALSE, grid=TRUE, multiline=TRUE)

The Effect function had as its first argument the names of two predictors, and it figured out that the
group*log(ppgdp) interaction is of interest.

The plot in alr[F5.3b] requires changing the horizontal axis. The syntax for this is a little compli-
cated.

plot(Effect(c("group", "ppgdp"), m1, default.levels=100),

rug=FALSE, grid=TRUE, multiline=TRUE,

transform.x=list(ppgdp=list(trans=log, inverse=exp)),

ticks.x =list(at= c(100, 1000, 5000, 30000)))

5.1.3 The Main Effects Model

Here is the code for alr[F5.4].

plot(allEffects(m1, default.levels=50), ylim=c(60,85),

grid=TRUE, multiline=TRUE)
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The allEffects function results in plots being drawn for all relevant effects1 The ylim argument
guarantees that the the limits on the vertical axis are the same for each plot.

When plotting using allEffects, try the argument ask=TRUE to see what happens.

5.3 Polynomial Regression

Polynomials can be formed in R in at least two ways. Suppose we have a response variable y and a
predictor variable x. For a simple example, we generate random data:

set.seed(191)

x <- 2 * runif(20)

y <- 1 + 2*x - 1*x^2 - 1.5*x^3 + rnorm(20)

There are n = 10 observations. The xs are uniform random numbers between 0 and 2. The response y

is a cubic polynomial in x plus a standard normal random number. The set.seed function guarantees
that the same random numbers will be generated if you try to reproduce this example.

A cubic polynomial can be fit using

m1 <- lm(y ~ x + I(x^2) + I(x^3))

This method uses the identity function I to “protect” the square and cubic regressors; otherwise the
function that reads the formula would incorrectly treat the “^” using its special meaning in formulas.

summary(m1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.168 0.546 -0.31 0.76
x 4.893 3.086 1.59 0.13

1If the model had an interaction, a plot for the interaction would be included, but not for each of the main effects that
go into the interaction.
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I(x^2) -2.968 3.996 -0.74 0.47
I(x^3) -1.055 1.352 -0.78 0.45

Residual standard error: 0.922 on 16 degrees of freedom
Multiple R-squared: 0.941
F-statistic: 85.2 on 3 and 16 DF, p-value: 4.7e-10

An alternative approach is to use the function poly (see also Companion[4.6.3]):

summary(m2 <- lm(y ~ poly(x, 3, raw=TRUE)))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.168 0.546 -0.31 0.76
poly(x, 3, raw = TRUE)1 4.893 3.086 1.59 0.13
poly(x, 3, raw = TRUE)2 -2.968 3.996 -0.74 0.47
poly(x, 3, raw = TRUE)3 -1.055 1.352 -0.78 0.45

Residual standard error: 0.922 on 16 degrees of freedom
Multiple R-squared: 0.941
F-statistic: 85.2 on 3 and 16 DF, p-value: 4.7e-10

An advantage to this second approach is that an effect plot can return the fitted cubic with the second
approach but not with the first:

print(plot(Effect("x", m2)))
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x effect plot
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Setting raw=FALSE in poly uses orthogonal polynomials rather than raw polynomials, Compan-
ion[4.6.3], alr[5.3.2]. The parameters are different, but the fitted values and the test for the cubic
regressor are the same.

summary(m3 <- lm(y ~ poly(x, 3)))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.941 0.206 -4.56 0.00032
poly(x, 3)1 -11.113 0.922 -12.06 1.9e-09
poly(x, 3)2 -9.651 0.922 -10.47 1.4e-08
poly(x, 3)3 -0.719 0.922 -0.78 0.44665

Residual standard error: 0.922 on 16 degrees of freedom
Multiple R-squared: 0.941
F-statistic: 85.2 on 3 and 16 DF, p-value: 4.7e-10
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5.3.1 Polynomials with Several Predictors

(See also Companion[Sec. 4.6.3].) With two predictors, and generalizing to more than two predictors,
the full second-order mean function alr[E6.4] can be fit to the cakes data by

m1 <- lm(Y ~ X1 + X2 + I(X1^2) + I(X2^2) + X1:X2, data=cakes)

or more compactly using the polym function

m2 <- lm(Y ~ polym(X1, X2, degree=2, raw=TRUE), data=cakes)

Try fitting both of these and compare the fitted models.
The new feature here is the interaction regressor X1:X2, which is obtained by multiplying X1 by X2

elementwise. Other programs often write an interaction as X1*X2, but in R, X1*X2 = X1+X2+X1:X2.
With the cakes data, try this command and see if you can figure out the meaning of all the variables.

model.matrix(~ polym(X1, X2, degree=2, raw=TRUE), data=cakes)

This matrix is hard to understand because of the very long column names. Here’s an alternative that
will shorten the names:

z <- with(cakes, polym(X1, X2, degree=2, raw=TRUE))

model.matrix(~ z)

5.4 Splines

Splines are an advanced topic that you or your instructor may choose to skip at a first reading.
In R you need to use the splines package to use a spline variable. To get alr[F5.9c] using B-splines,

use

library(splines)

m1 <- lm(Interval ~ bs(Duration, df=5), oldfaith)

plot(Interval ~ Duration, oldfaith)
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x <- with(oldfaith, seq(min(Duration), max(Duration), lenght=100))

lines(x, predict(m1, newdata=data.frame(Duration=x)))

The regression coefficients for each spline basis vector are generally not of interest. The Analysis of
Variance discussed in Chapter 6 can be used for testing. Effects plots can be used with spline predictors.

A superb book Wood (2006) provides a comprehensive discussion of additive and generalized additive
models, in which a spline basis is used for one or more predictors, with the df for each spline chosen in
a sensible way. This book also introduces the mgcv package for R, named for the way the df are chosen,
using generalized cross-validation.

5.5 Principal Components

Principal components depend on the scaling and centering of the data, and in most instances variables
will be centered to have mean 0 and scaled to have column standard deviation 1. An exception to this
rule can occur if the variables of interest are on the same scale.

For the professor ratings in alr[5.1], the scaled principal components are computed using the prcomp
function:

x <- Rateprof[, 8:12]

z <- prcomp(scale(x))

The scale function returns a scaled version of its argument 0 column means and column sds equal to
1.

The eigenvectors, which give the linear combinations of the original variables that define the principal
component vectors, are given by

z

Standard deviations:
[1] 1.89212 0.89546 0.73311 0.28051 0.04357
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Rotation:
PC1 PC2 PC3 PC4 PC5

quality -0.5176 -0.03835 0.2666 -0.036156 0.8113092
helpfulness -0.5090 -0.04358 0.2451 -0.697681 -0.4384192
clarity -0.5053 -0.02414 0.2893 0.714757 -0.3867140
easiness -0.3537 -0.55824 -0.7498 0.032238 -0.0042706
raterInterest -0.3042 0.82729 -0.4722 0.004175 0.0003509

while the eigenvalues are given by

summary(z)

Importance of components:
PC1 PC2 PC3 PC4 PC5

Standard deviation 1.892 0.895 0.733 0.2805 0.04357
Proportion of Variance 0.716 0.160 0.107 0.0157 0.00038
Cumulative Proportion 0.716 0.876 0.984 0.9996 1.00000

alr[T5.5] shows the results based on unscaled principal components. In this instance the column means
and sds are very similar, and so the results are similar, but not identical to, the scaled computations.

The object z created above can be used in further calculations.

predict(z)

will return the principal vectors, obtained by multiplying the original (scaled) data by the matrix
of eigenvectors. Usually the first few columns of this matrix will be used to replace all the original
data. You can also get predictions for values not used in computing the eigenvalues using the newdata

argument as is usual with the predict function. The plot function produces a scree plot, which is just
a bar diagram of the eigenvalues (called variances in the plot). You can get a plot of the first principal
component against all the original predictors using, for example,

pairs(cbind(x, predict(z)[,1]))

Try it: for these data the first PC contains almost all the information in 3 of the original predictors,
and “much” of the information in the remaining two.
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5.6 Missing Data

The R package mice contains a useful function called md.pattern that gives a summary of missing data
in a data frame. For example,

library(mice)

md.pattern(MinnLand)

acrePrice region year acres financing crpPct improvements tillable productivity
8770 1 1 1 1 1 1 1 1 1 0

17 1 1 1 1 1 1 0 1 1 1
196 1 1 1 1 1 1 1 0 1 1

8671 1 1 1 1 1 1 1 1 0 1
30 1 1 1 1 1 1 0 1 0 2

1013 1 1 1 1 1 1 1 0 0 2
3 1 1 1 1 1 1 0 0 0 3

0 0 0 0 0 0 50 1212 9717 10979

This data frame has 8770 rows that are complete, 17 rows missing improvements, 1013 rows missing
tillable and productivity, and so on. In addition, 9717 of the rows are missing productivity. The
first step to coping with missing data is learning what is missing.



CHAPTER 6

Testing and Analysis of Variance

We discuss four important R functions that can be used to compute tests described in this chapter:

• anova, part of the standard distribution of R. This function is used for getting F -tests and Analysis
of Variance tables for comparing 2 or more models, and for computing Type I, or sequential,
Analysis of Variance for one model.

• Anova, with a capital “A”, is part of the car package, and can be used for computing Types II
and III Analysis of Variance.

• linearHypothesis, which is used to compute Wald tests, as discussed in alr[6.5.3]. For linear
regression models Wald tests are equivalent to likelihood ratio F -tests, but they are different in
small samples for other types of models, such as logistic regression.

53
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• lsmeans, in the lsmeans package, is used to get tests, with correction for multiple testing, for the
difference between levels in a factorial design.

These functions are particularly useful because the can be used with many models beyond linear models,
including nonlinear models, generalized linear models, mixed models and many others.

6.1 The anova Function

For illustration, we will use the fuel2001 data. First, create the regressors needed,

library(alr4)

fuel2001 <- transform(fuel2001, Dlic=1000*Drivers/Pop,

Fuel=1000*FuelC/Pop, Income=Income/1000)

and then fit a sequence of models:

m0 <- lm(Fuel ~ 1, fuel2001)

m1 <- update(m0, ~ Tax)

m2 <- update(m1, ~ . + Dlic)

m3 <- update(m2, ~ . + Income + log(Miles))

The model m0 is the null model with no regressors beyond the intercept. The model m1 uses only Tax

as a regressor, m2 uses Tax and Dlic, and m3 adds both Income and log(Miles), so m3 has 4 regressors
beyond the intercept. The update function is used to fit the successive models. When creating m1, the
formula defining the model is updated on the right side, but the response on the left side is not changed.
In creating m2, including the “.” on the right side updates the regressors by adding Dlic, so this is now
equivalent to Fuel ~ Tax + Dlic.

The overall test for NH: Model m0 vs. AH: m3 is given by

anova(m0, m3)
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Analysis of Variance Table

Model 1: Fuel ~ 1
Model 2: Fuel ~ Tax + Dlic + Income + log(Miles)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 50 395694
2 46 193700 4 201994 11.992 9.331e-07

The first row of this table is for the fit of m0, fitting only an intercept. The df and RSS for m0 are,
respectively, n− 1 and SYY, the total sum of squares. The second row gives the df and RSS for m3, and
also SSreg, the change in df and change in RSS from m0. These differences are required in the numerator
of alr[E6.3]. The F -test shown corresponds exactly to alr[E6.3], in this case with (4, 46) df. This
F -test is also shown in the summary output for m3:

summary(m3)

Call:
lm(formula = Fuel ~ Tax + Dlic + Income + log(Miles), data = fuel2001)

Residuals:
Min 1Q Median 3Q Max

-163.145 -33.039 5.895 31.989 183.499

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 154.1928 194.9062 0.791 0.432938
Tax -4.2280 2.0301 -2.083 0.042873
Dlic 0.4719 0.1285 3.672 0.000626
Income -6.1353 2.1936 -2.797 0.007508
log(Miles) 26.7552 9.3374 2.865 0.006259
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Residual standard error: 64.89 on 46 degrees of freedom
Multiple R-squared: 0.5105, Adjusted R-squared: 0.4679
F-statistic: 11.99 on 4 and 46 DF, p-value: 9.331e-07

The command

anova(m1, m3)

Analysis of Variance Table

Model 1: Fuel ~ Tax
Model 2: Fuel ~ Tax + Dlic + Income + log(Miles)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 49 369059
2 46 193700 3 175359 13.881 1.41e-06

provides the F -test for NH: model m1 versus AH: model m3. If more than two models are compared we
get

anova(m1, m2, m3)

Analysis of Variance Table

Model 1: Fuel ~ Tax
Model 2: Fuel ~ Tax + Dlic
Model 3: Fuel ~ Tax + Dlic + Income + log(Miles)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 49 369059
2 48 289681 1 79378 18.851 7.692e-05
3 46 193700 2 95981 11.397 9.546e-05
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The F -test in row 2 of this table is for the null hypothesis m1 versus the alternative m2, but using the
RSS from m3 to estimate error variance. Row 3 of the table is for the null hypothesis m2 versus the
alternative m3, again using the RSS from m3 to estimate error variance.

If anova is used with one argument, we get

anova(m3)

Analysis of Variance Table

Response: Fuel
Df Sum Sq Mean Sq F value Pr(>F)

Tax 1 26635 26635 6.3254 0.0154602
Dlic 1 79378 79378 18.8506 7.692e-05
Income 1 61408 61408 14.5833 0.0003997
log(Miles) 1 34573 34573 8.2104 0.0062592
Residuals 46 193700 4211

This is a sequential or Type I, analysis of variance. The F in the row of Tax tests NH: m1 versus
AH: m0. The F in the row for Dlic tests NH: m2 versus AH: m1. Thus each F is a test for adding
the regressor named to a mean function that includes all the regressors listed above it, including an
intercept if any. This breakdown is rarely of other than pedagogical interest.

6.2 The Anova Function

The Anova function is used to get a single Analysis of Variance table that summarizes all of the usual
tests that might be contemplated for a given model. The Anova function accepts only one model as an
argument:

Anova(m3)
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Anova Table (Type II tests)

Response: Fuel
Sum Sq Df F value Pr(>F)

Tax 18264 1 4.3373 0.0428733
Dlic 56770 1 13.4819 0.0006256
Income 32940 1 7.8225 0.0075078
log(Miles) 34573 1 8.2104 0.0062592
Residuals 193700 46

These are the Type II tests for each of the coefficients as described in alr[6.2]. Unlike the one-at-a-time
tests illustrated earlier, all these tests use the fit of a model with all the regressors to get the estimate
of σ2 for the denominator of the test. This is standard practice used in statistical software.

The Type II anova that is the default in the Anova command agrees with the Type I anova obtained
above with the anova command only for the last test in the table, in the example for log(Miles).
Anova can also be used to get Type III tests using the argument type=3.. For Type III tests with
factors, non-default definition for the contrasts that define the factors must be used to get the correct
answer; see Companion[4.4.4].

6.3 The linearHypothesis Function

A general linear hypothesis alr[6.5.3] can be computed with the linearHypotheis function from the
car package (see also Companion[4.4.5]). To test NH : Lβ = c versus the alternative AH : Lβ 6= c,
the test statistic is alr[E6.21]

F =
(L− c)′(LV̂L′)−1(L− c)

q

Under NH and normality this statistic can be compared with an F (q, n− p′) distribution to get signifi-
cance levels. Computing this test requires specifying the matrix L and the vector c. In most instances
c = 0. The general form of calls to the function is
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linearHypothesis(model, hypothesis.matrix, rhs)

where model is a fitted model, hypothesis.matrix is either the matrix L are something equivalent,
and RHS is c, set to 0 if not specified.

For the UN data,

u1 <- lm(lifeExpF ~ group*log(ppgdp), UN11)

coef(u1)

(Intercept) groupother groupafrica
59.2136614 -11.1731029 -22.9848394
log(ppgdp) groupother:log(ppgdp) groupafrica:log(ppgdp)
2.2425354 0.9294372 1.0949810

We can test for equality of intercepts for levels other and africa using

linearHypothesis(u1, c(0, 1, -1, 0, 0 ,0))

Linear hypothesis test

Hypothesis:
groupother - groupafrica = 0

Model 1: restricted model
Model 2: lifeExpF ~ group * log(ppgdp)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 194 5204.2
2 193 5077.7 1 126.53 4.8094 0.0295

In this case L has only one row. Because the first element of the argument is 0, the first coefficient for
the intercept is ignored. The 1 and −1 in the second and third elements will examine the difference
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between the second and third coefficients. The remaining zeroes ignore the remaining coefficients. There
are several other ways of specifying this, including:

linearHypothesis(u1, "groupother=groupafrica")

linearHypothesis(u1, "groupother-groupafrica")

linearHypothesis(u1, "1*groupother - 1*groupafrica = 0")

We can simultaneously test the slope and intercept for other and africa to be equal, with the matrix

L =

(
0 1 −1 0 0 0
0 0 0 0 1 −1

)
specified as

L <- matrix(c(0, 1, -1, 0, 0, 0,

0, 0, 0, 0, 1, -1), byrow=TRUE, nrow=2)

linearHypothesis(u1, L)

Linear hypothesis test

Hypothesis:
groupother - groupafrica = 0
groupother:log(ppgdp) - groupafrica:log(ppgdp) = 0

Model 1: restricted model
Model 2: lifeExpF ~ group * log(ppgdp)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 195 8081.2
2 193 5077.7 2 3003.5 57.081 < 2.2e-16

The very small p-value suggests that either the slope, intercept, or both is different for the two levels of
group. The test for common intercepts with separate slopes was given above with p-value 0.295. The
test for equal slopes but allowing for separate intercepts uses only the second row of L:
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linearHypothesis(u1, L[2, ])

Linear hypothesis test

Hypothesis:
groupother:log(ppgdp) - groupafrica:log(ppgdp) = 0

Model 1: restricted model
Model 2: lifeExpF ~ group * log(ppgdp)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 194 5079.2
2 193 5077.7 1 1.4597 0.0555 0.814

The help page ?linearHypothesis contains many more examples.

6.4 Comparisons of Means

As an example, consider the wool data treating len, amp and load as factors:

Wool$len <- factor(Wool$len)

Wool$amp <- factor(Wool$amp)

Wool$load <- factor(Wool$load)

m1 <- lm(log(cycles) ~ (len + amp + load)^2, Wool)

Anova(m1)

Anova Table (Type II tests)

Response: log(cycles)
Sum Sq Df F value Pr(>F)
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len 12.5159 2 301.7441 2.930e-08
amp 7.1674 2 172.7986 2.620e-07
load 2.8019 2 67.5509 9.767e-06
len:amp 0.4012 4 4.8357 0.02806
len:load 0.1358 4 1.6364 0.25620
amp:load 0.0146 4 0.1760 0.94456
Residuals 0.1659 8

Because this is a balanced experiment, Type I and Type II analysis of variance are the same so anova

could have been used. Only one of the two-factor interactions appears to be important, so we concentrate
on the mean function including only this one interaction,

m2 <- update(m1, ~ . - amp:load - len:load)

The model m1 included all three two-factor interactions. Model m2 is an update of this removing two of
the two-factor interactions.

The effects plots copied from alr[F6.1] are:

ef2 <- allEffects(m2)

plot(ef2, ask=FALSE, multiline=TRUE, main="", rug=FALSE, grid=TRUE,

ci.style="bars", key.arg=list(corner=c(.98, .02)))

The plot was created in two steps, first by setting ef2 to be the result of allEffects, and the second
applies plot to ef2. The arguments ci.style and key.arg are used for custom choices for confidence
interval style and placement of the legend. The first figure summarizes the load effect and the second
the interaction between the remaining factors.
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If we print ef2,

ef2

model: log(cycles) ~ len + amp + load + len:amp

load effect
load

40 45 50
6.704924 6.379635 5.919685

len*amp effect
amp

len 8 9 10
250 6.034496 5.584550 4.802098
300 6.931545 6.480485 5.764111
350 7.955145 6.890521 6.569782



CHAPTER 6. TESTING AND ANALYSIS OF VARIANCE 64

These are the adjusted means. The first table for load gives the estimated average response for load

equal to 40, 45 or 50 when the other regressors are fixed at their sample mean values (this default can
be changed by the user). The len*amp table gives the adjusted means for each combination of amp and
len when the regressors that represent load are set equal to their sample mean values. In the case of
a balanced experiment like this one, the adjusted means are simply the sample means of the data for
each combination of the focal predictor or predictors.

It is often of interest to compute tests to compare various adjusted means. These are in theory
simply tests concerning linear combinations of coefficients, alr[3.5], but doing the computations can
be complicated in complex models. The lsmeans package (Lenth, 2013) does the required calculations1.

library(lsmeans)

lsmeans(m2, pairwise ~ load)

$‘load lsmeans‘
load lsmean SE df lower.CL upper.CL

40 6.704924 0.0468645 16 6.605576 6.804273
45 6.379635 0.0468645 16 6.280286 6.478983
50 5.919685 0.0468645 16 5.820337 6.019034

$‘load pairwise differences‘
estimate SE df t.ratio p.value

40 - 45 0.3252896 0.06627641 16 4.90808 0.00044
40 - 50 0.7852390 0.06627641 16 11.84794 0.00000
45 - 50 0.4599494 0.06627641 16 6.93987 0.00001

p values are adjusted using the tukey method for 3 means

Although the syntax is different, lsmeans and effects do fundamentally the same calculations, with
effects focusing on graphs and lsmeans on tests. The output above gives the estimated means, their

1lsmeans is not automatically loaded when you load alr4, so the library command shown is required. If you do not
have lsmeans on your system, you can get it with the command install.packages("lsmeans").
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standard errors, and confidence intervals. The pairwise differences are the estimated differences between
all pairs of means, their standard errors, t-value, and appropriate significance level adjusted for multiple
testing. In this example all 3 pairwise comparisons are apparently non-zero with very small p-values.

For the len:amp interaction, we could compare levels for amp for each level of len

lsmeans(m2, pairwise ~ amp|len)[[2]]

estimate SE df t.ratio p.value
8 - 9 | 250 0.4499457 0.1147941 16 3.91959 0.00331
8 - 10 | 250 1.2323981 0.1147941 16 10.73573 0.00000
9 - 10 | 250 0.7824523 0.1147941 16 6.81614 0.00001
8 - 9 | 300 0.4510601 0.1147941 16 3.92930 0.00324
8 - 10 | 300 1.1674344 0.1147941 16 10.16981 0.00000
9 - 10 | 300 0.7163743 0.1147941 16 6.24051 0.00003
8 - 9 | 350 1.0646238 0.1147941 16 9.27420 0.00000
8 - 10 | 350 1.3853636 0.1147941 16 12.06825 0.00000
9 - 10 | 350 0.3207399 0.1147941 16 2.79404 0.03295

p values are adjusted using the tukey method for 3 means

The [[2]] in the command shortened the output by suppressing the first table of cell means.
Two variations on this:

lsmeans(m2, pairwise ~ len|amp)

compares levels of len for each value of amp, and

lsmeans(m2, pairwise ~ len:amp)

returns all 72 comparisons between the the (len, amp) means.
For a more general introduction to the full power of lsmeans, enter the command

vignette("using-lsmeans", package="lsmeans")

into R.
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6.5 Power

Suppose we have a regressor X2 with values 0 and 1, with 0 indicating units that are to be given a
control treatment and 1 to be given a new treatment, with assignment of units to treatments to be done
at random. In addition, suppose we have p = 5 other regressors, plus an intercept, and n = 20.

A test for a treatment effect is equivalent to testing β2 = 0 versus β2 6= 0, for which we can use an
F -test and reject at level α = 0.05 if the observed value of F exceeds

(crit.val <- qf(1 - .05, 1, 20 - 5 - 1 -1))

[1] 4.667193

Now suppose there is a treatment effect of magnitude β2/σ = 0.75, where σ is the standard deviation
of regression from the fitted model. We measure the size of the the effect in σ units. The probability
that the null hypothesis of β2 = 0 is rejected in this situation is the power of the test, and it depends
on the noncentrality parameter λ defined in general at alr[E6.18], and for this particular example the
noncentrality is given juse above alr[E6.19] as λ = (n− 1)SD2

2(β2/σ)2 = 20(.75)2/4 = 2.8125 because
SD2

2 = 1/4 for this design. The power of the test is

my.power <- function(n=20, lambda=(n-1)*.75^2/4, p=5, alpha=0.05){

pf(qf(1-alpha, 1, n-p-1-1),

1, n-p-1-1, lambda, lower.tail=FALSE)

}

my.power()

[1] 0.328279

We defined my.power as a function with arguments that give the sample size, the noncentrality pa-
rameter, the number of additional regressors and the significance level. When executed, my.power calls
the function pf that will return the probability that the value of F exceeds the first argument of the
function, which is the critical value determined previously. The remaining arguments are the df, the
value of λ, and lower.tail=FALSE to get the power rather than the probability of Type II error.
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The power is disappointing: there is only about a 34% chance of detecting a difference of this size.
If we triple the sample size:

my.power(n=60)

[1] 0.8072793

we can get up to about 80% power.
If the size of the effect of interest is fixed, one can draw a power curve as a function of sample size

to determine the sample size:

plot(1:100, my.power(n=1:100),

xlab="sample size", ylab="power", type="l")

grid(lty=1,col="gray")
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If sample size is fixed but the effect size is allowed to vary,
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plot(seq(0, 2, length=100),

my.power(lambda=20*seq(0,2,length=100)^2/4),

xlab="standardized effect size", ylab="power", type="l")

grid(lty=1,col="gray")
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The function my.power is perfectly general in linear models for computing the power of a test or power
curves. The difficulty is in computing the noncentrality parameter λ, given in general at alr[E6.18] and
in special cases at alr[E6.19] and alr[E6.20]. Because using these equations can be difficult, some
statistical packages include power calculators, essentially applications of the my.power for particular
situations. One of these is the power calculator given by Lenth (2006–9), and accessible at http:

//www.stat.uiowa.edu/~rlenth/Power. For example, the “Linear regression” option on Lenth’s power
calculator is for the power of an overall F -test. In the resulting dialog, you can get results similar,
but not identical to, the results from my.power by setting No. of predictors = 1, SD of x = .5.
Setting Error SD = 1, makes Detectable beta equal to β2/σ, the effect size. The dialog can be used
to determine any of power, detectable difference, or sample size for given values of the other two.

http://www.stat.uiowa.edu/~rlenth/Power
http://www.stat.uiowa.edu/~rlenth/Power
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6.6 Simulating Power

alr[6.4] contains a small simulation to demonstrate the effect of sample size on the significance level
of a test. First, the problem is set up.

MinnLand$fyear <- factor(MinnLand$year)

n <- length(MinnLand$fyear) # sample size

m1 <- lm(log(acrePrice) ~ fyear + region + year:region, MinnLand) # the model

set.seed(400) # for reproducibility, always use the same random numbers

frac <- c(.05, .1, .15, .20, .25, .30) # fraction of the data to use

sample.sizes <- floor(n * frac) # sample size rounded down to be integers

reps <- 100 # number of replications

We can use the Anova function to get the p-value for the test, using

Anova(m1)[3, 4]

[1] 6.735433e-26

since the test for the interaction is on the third row of the Anova output, and the p-value is in the fourth
column. We do the simulation using the update function to apply Anova to a randomly selected subset
of the observations.

The simulation is done by the following for loops (see also Companion[8.3.2]).

pvals <- as.data.frame(matrix(0, reps, length(frac))) # initialize output as a data.frame

colnames(pvals) <- sample.sizes # label the columns with the sample sizes

# Here is the simulation:

for (j in 1:length(sample.sizes)) {

for(i in 1:reps) {

pvals[i, j] <- Anova(update(m1, subset=sample(1:n, sample.sizes[j])))[3, 4]

}}

# This is the end of the simulation. Now, compute summary statistics on each column
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out <- data.frame(Average=apply(pvals, 2, mean),

Sd = apply(pvals, 2, sd),

Power=apply(pvals, 2, function(x) sum(x < .05)/reps))

t(out) # transpose the output for prettier printing:

935 1870 2805 3740 4675 5610
Average 0.170637 0.05484359 0.02017971 0.0007464058 0.0004139794 9.181443e-06
Sd 0.202754 0.09380331 0.07486963 0.0024162058 0.0015588169 5.370229e-05
Power 0.360000 0.73000000 0.91000000 1.0000000000 1.0000000000 1.000000e+00

Average is the average p-value in the 100 replications; Sd is the standard deviation of the p-values, and
Power is the fraction of samples with p-value smaller than α = 0.05.
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Variances

7.1 Weighted Least Squares

Weighted least squares estimates are most easily obtained using the weights argument for the lm

command. In the physics data in alr[5.1], the weights are the inverse squares of the variable SD in the
data frame. wls is computed by

m1 <- lm(y ~ x, data=physics, weights=1/SD^2)

summary(m1)

Call:
lm(formula = y ~ x, data = physics, weights = 1/SD^2)

71
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Weighted Residuals:
Min 1Q Median 3Q Max

-2.323 -0.884 0.000 1.390 2.335

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 148.47 8.08 18.4 7.9e-08
x 530.84 47.55 11.2 3.7e-06

Residual standard error: 1.66 on 8 degrees of freedom
Multiple R-squared: 0.94, Adjusted R-squared: 0.932
F-statistic: 125 on 1 and 8 DF, p-value: 3.71e-06

You can nearly “set and forget” weights and use lm for wls just as you would for ols. There are,
however, a few exceptions:

1. The residuals helper function returns a vector of y − ŷ, as with ols. With wls a more reason-
able set of residuals is given by

√
w(y − ŷ). R will return these correct residuals if you specify

residuals(m1, type="pearson"). For ols all the weights equal one, so the Pearson and ordi-
nary residuals are identical. Consequently, if you always use type="pearson", you will always be
using the right residuals.

2. The predict helper function was recently rewritten to include a weights argument for predictions
at new values. See ?predict.lm for details.
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7.2 Misspecified Variances

7.2.1 Accommodating Misspecified Variance

The function hccm in the car package can be used to get a heteroscedasticity-corrected covariance
matrix. For example, using the sniffer data the ols fit is obtained by:

s1 <- lm(Y ~ ., sniffer)

The formula Y ~ . uses Y as the response, and all other columns in the data frame as predictors.
The vcov function returns the usual estimate of Var(β̂):

vcov(s1)

(Intercept) TankTemp GasTemp TankPres GasPres
(Intercept) 1.070996 0.008471 -0.017735 -0.20657 0.09309
TankTemp 0.008471 0.002359 -0.001003 -0.04777 0.02791
GasTemp -0.017735 -0.001003 0.001696 0.04149 -0.04686
TankPres -0.206566 -0.047774 0.041495 2.49641 -2.38665
GasPres 0.093089 0.027915 -0.046864 -2.38665 2.64112

The square roots of the diagonals of this matrix,

sqrt(diag(vcov(s1)))

(Intercept) TankTemp GasTemp TankPres GasPres
1.03489 0.04857 0.04118 1.58000 1.62515

are the standard errors of the coefficients used in the usual regression output:

summary(s1)$coef
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.15391 1.03489 0.1487 8.820e-01
TankTemp -0.08269 0.04857 -1.7027 9.122e-02
GasTemp 0.18971 0.04118 4.6064 1.028e-05
TankPres -4.05962 1.58000 -2.5694 1.141e-02
GasPres 9.85744 1.62515 6.0656 1.574e-08

The hc3 estimated is returned by

hccm(s1, type="hc3")

(Intercept) TankTemp GasTemp TankPres GasPres
(Intercept) 1.09693 0.015622 -0.012831 -0.26718 -0.03244
TankTemp 0.01562 0.001975 -0.000641 -0.03916 0.01823
GasTemp -0.01283 -0.000641 0.001142 0.03986 -0.04345
TankPres -0.26718 -0.039156 0.039856 3.89032 -3.86151
GasPres -0.03244 0.018228 -0.043447 -3.86151 4.22652

The function coeftest in the lmtest package1 allows using the output from hccm or any other estimate
of Var(β̂):

library(lmtest)

coeftest(s1, vcov=hccm)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1539 1.0473 0.15 0.883
TankTemp -0.0827 0.0444 -1.86 0.065

1lmtest is not automatically loaded when you load alr4, so the library command shown is required. If you do not
have lmtest on your system, you can get it with the command install.packages("lmtest").



CHAPTER 7. VARIANCES 75

GasTemp 0.1897 0.0338 5.61 1.3e-07
TankPres -4.0596 1.9724 -2.06 0.042
GasPres 9.8574 2.0559 4.79 4.7e-06

The R functions linearHypothesis, Anova and deltaMethod in the car package have options to
use hccm in in place of vcov; see the help pages for these functions.

7.2.2 A Test for Constant Variance

The ncvTest function in the car package can be used to compute the nonconstant variance test (see
also Companion[6.5.2]). To test for nonconstant variance as a function of the mean in the sniffer

data,

ncvTest(s1)

Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 4.803 Df = 1 p = 0.02842

To test as a function of TankTemp and GasTemp,

ncvTest(s1, ~ TankTemp + GasTemp)

Non-constant Variance Score Test
Variance formula: ~ TankTemp + GasTemp
Chisquare = 9.836 Df = 2 p = 0.007313

7.3 General Correlation Structures

7.4 Mixed Models

See http://socserv.mcmaster.ca/jfox/Books/Companion-1E/appendix-mixed-models.pdf

http://socserv.mcmaster.ca/jfox/Books/Companion-1E/appendix-mixed-models.pdf
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The figure alr[F7.4] uses lattice graphics. Here is the R command:

print(xyplot(y ~ loudness, group=subject, data=Stevens, type=c("l", "g", "p"),

xlab="Loudness (db)", ylab="Average log(length)"))
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7.6 The Delta Method

(See also Companion[4.4.6].) The deltaMethod implements the delta-method for computing the esti-
mate and standard error of any combination of regression coefficients. For example, with the transaction
data,

m1 <- lm(time ~ t1 + t2, data=Transact)

an estimate and standard error for β1/β2 is
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deltaMethod(m1, "t1/t2")

Estimate SE
t1/t2 2.685 0.319

The first argument is the name of a regression model and the second argument is a quoted expression
that evaluated returns the combination of parameters of interest. Here the “names” of the parameters
are the names returned by names(coef(m1)), so the parameter names are the regressor names for a
linear model. To get the standard error for (β0 + β1)/(β0 + β2), use

deltaMethod(m1, "((Intercept) + t1)/((Intercept) + t2)")

Estimate SE
((Intercept) + t1)/((Intercept) + t2) 1.023 0.026

You can also rename the parameter estimates for easier typing:

deltaMethod(m1, "(b0 + b1)/(b0 + b2)", parameterNames= c("b0", "b1", "b2"))

Estimate SE
(b0 + b1)/(b0 + b2) 1.023 0.026

If you do an assignment,

out1 <- deltaMethod(m1, "t1^2/sqrt(t2)")

then out1 is a data.frame with one row and two columns, that you can use in other computations,

out1

Estimate SE
t1^2/sqrt(t2) 20.92 3.705

7.7 The Bootstrap

See http://z.umn.edu/carboot for an introduction to bootstrapping with the car package.

http://z.umn.edu/carboot


CHAPTER 8

Transformations

8.1 Transformation Basics

This chapter uses graphs and smoothers in ways that are uncommon in most most statistical packages,
including R (see also Companion[3.4]).

Our solution to this problem is to automate this process with several commands that are included
in the car. These commands become available when you use the command library(alr4) to load the
data files. In the main part of this chapter we show how to use these commands, along with an outline
of what they do. Here is a description of coming attractions.

Transformation families We work with three families of transformations. The basic power family is
computed with the function basicPower; the Box-Cox power family is computed with bcPower,

78
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and the Yeo-Johnson family, which can be used if the variable includes non-positive values, is
computed with yjPower.

Transforming predictors The invTranPlot function provides a graphical method to transform a
single predictor for linearity. The powerTransform function provides a method for transforming
one or more variables for normality. It also permits conditioning on other, non-transformed
variables.

Although these function are adequate for almost all applications, additional function are available
in the car package that are not discussed in alr, including boxTidwell which is essentially a
numerical generalization of invTranPlot, and of crPlots for component plus residual plots.

Transforming the response The boxcox command in the MASS package implements the Box-Cox
method of finding a power transformation. The function boxCox with a capital “C” extends the
method to allow for using the Yeo-Johnson family of transformations, but it is otherwise identical
to boxcox. The powerTransform command provides numeric, rather than graphical, output, for
the same method. The invResPlot is used to transform the response for linearity using a graph.

8.1.1 Power Transformations

8.1.2 Transforming Only the Predictor Variable

The graph in alr[F8.1] uses the scatterplot function in car. Here is the code:

scatterplot(BrainWt ~ BodyWt, brains, id.n=3, boxplots=FALSE, smooth=FALSE, reg=FALSE)

Asian elephant Human African elephant
19 32 33
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The scatterplot function is an elaboration of the plot function with many helpful additions to the plot
done either by default or using arguments. This command used the brains data file to plot BrainWt

versus BodyWt. The argument id.n=3 is used in car graphics to identify 3 of the points with labels.
With scatterplot points that are “farthest” from the center of the data are labeled. Look at the help
page ?showLabels for complete information. The remaining 3 arguments turn off marginal boxplots, a
fitted smoother and a fitted ols line, which are included by default with scatterplot.

8.1.3 Transforming One Predictor Variable

The car package includes a function called invTranPlot for drawing the inverse transformation plots
like alr[F8.3].

with(ufcwc, invTranPlot(Dbh, Height))

lambda RSS
1 0.04788 152123
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λ̂: 0.05 −1 0 1

The plot command also produces some printed output in the text window, as shown above. This is a
table of RSS as a function of the transformation parameter λ, evaluated at λ ∈ (−1, 0, 1) and at the
value of λ that minimizes RSS, obtained by solving a nonlinear regression problem. In the example
λ̂ = 0.05 ≈ 0, so the log-transform for Dbh is suggested. See ?invTranPlot for arguments you can use
to control this plot.

The function invTranEstimate can be called directly to get the optimal λ without drawing the
graph,

unlist(with(ufcwc, invTranEstimate(Dbh,Height)))

lambda lowerCI upperCI
0.04788 -0.16395 0.25753
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The minimum value of RSS =152,123. The unlist command made the output prettier.
The command bcPower is used by invTranEstimate and by invTranPlot to compute Box-Cox

power transformations. The form of this command is

bcPower(U, lambda, jacobian.adjusted=FALSE)

where U is a vector, matrix or data frame, lambda is the transformation parameter. If U is a vector,
then lambda is just a number, usually in the range from −2 to 2; if U is a matrix or a data, frame,
then lambda is a vector of numbers. The function returns ψS(U, λ), as defined at alr[E8.3]. If you set
jacobian.adjusted=TRUE then ψM (U, λ), from alr[E8.5], is returned.

The yjPower command is similar but uses the Yeo-Johnson family ψY J(U, λ), alr[7.4]. Finally, use
basicPower for the power transformations ψ(U, λ). For example, to plot a response Y versus ψM (U, 0),
type

plot(bcPower(U, 0, jacobian.adjusted=FALSE), Y)

8.2 A General Approach to Transformations

The powerTransform function in the car package is the central tool for helping to choose predictor
transformations. For the highway data, alr[T8.2] is obtained by

Highway$sigs1 <- with(Highway, (sigs * len + 1)/len)

summary(powerTransform(cbind(len, adt, trks, shld, sigs1) ~ 1, Highway))

bcPower Transformations to Multinormality

Est.Power Std.Err. Wald Lower Bound Wald Upper Bound
len 0.1437 0.2127 -0.2732 0.5607
adt 0.0509 0.1206 -0.1854 0.2872
trks -0.7028 0.6177 -1.9134 0.5078
shld 1.3456 0.3630 0.6341 2.0570



CHAPTER 8. TRANSFORMATIONS 83

sigs1 -0.2408 0.1496 -0.5341 0.0525

Likelihood ratio tests about transformation parameters
LRT df pval

LR test, lambda = (0 0 0 0 0) 23.324 5 0.0002926
LR test, lambda = (1 1 1 1 1) 132.857 5 0.0000000
LR test, lambda = (0 0 0 1 0) 6.089 5 0.2976931

The first argument powerTransform can alternatively be a vector, matrix or data frame; see ?pow-

erTransform for the details

8.2.1 Transforming the Response

alr[8.3] presents two complementary approaches to selecting a response transformation, using an in-
verse response plot, and using the Box-Cox method but applied to the response, not the predictors. In
either case, first fit the model of interest, but with the response untransformed:

m2 <- lm(rate ~ log(len) + log(adt) + log(trks) + shld + log(sigs1) + slim, Highway)

The inverse response plot is drawn with

inverseResponsePlot(m2)

lambda RSS
1 0.1846 30.62
2 -1.0000 34.72
3 0.0000 30.73
4 1.0000 32.46



CHAPTER 8. TRANSFORMATIONS 84

2 4 6 8

0
2

4
6

8

rate
yh

at

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

λ̂: 0.18 −1 0 1

As with the inverse transformation plot, the values of RSS for the displayed curves are shown in the
text window. In the example the value of λ̂ = 0.18 minimizes RSS, but from alr[F8.7a] there is little
to distinguish using this value of λ from the simpler case of λ = 0, meaning that the fitted curves for
these two values of λ match the data nearly equally well. The log-transform is therefore suggested.

The boxcox function in the MASS package can be used to get alr[F8.7b],

boxCox(m2)
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This plot shows the log-likelihood profile function for λ. The estimator maximizes this function1. If
L(λ̂) is the value of the log-likelihood at λ̂, then a 95% confidence interval for the λ is the set λ for

which L(λ) ≥ L(λ̂)− 1.92. You can get the interval printed using

summary(powerTransform(m2))

bcPower Transformation to Normality

Est.Power Std.Err. Wald Lower Bound Wald Upper Bound
Y1 -0.2384 0.2891 -0.805 0.3282

Likelihood ratio tests about transformation parameters
LRT df pval

1boxCox is in the car package. It is based on a very similar function called boxcox in the base R, and adds the ability
to use other families besides the Box-Cox power family.
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LR test, lambda = (0) 0.6884 1 4.067e-01
LR test, lambda = (1) 18.2451 1 1.942e-05

8.4 Transformations of Nonpositive Variables

The transformation functions in car, powerTransform, inverseResponsePlot and invTranPlot, have
an argument family, and setting family="yjPower" will use the Yeo-Johnson transformation family
alr[E8.8] in place of the Box-Cox family.

8.5 Additive Models

8.6 Problems
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Regression Diagnostics

R has several functions for working with a fitted model. For example, with the rat data,

m1 <- lm(y ~ BodyWt + LiverWt + Dose, rat)

we can get:

predictions or fitted values using the predict function, for example

predict(m1)

1 2 3 4 5 6 7 8 9 10 11
0.2962 0.3391 0.5359 0.3306 0.2977 0.3129 0.3134 0.3604 0.3177 0.3828 0.3501

87
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12 13 14 15 16 17 18 19
0.3176 0.3082 0.3071 0.3084 0.3388 0.3184 0.3093 0.3253

gives predicted weights for the 19 rats in the data. See ?predict.lm for all the available arguments
for this helper function.

residuals can be obtained using several functions (see also Companion[6.1]). Ordinary residuals,
given by ê = y − ŷ are obtained with residuals(m1). The Pearson residuals, the preferred
residuals in alr, are obtained by residuals(m1, type="pearson"). The standardized residuals
alr[E9.18] and Studentized residuals alr[E9.19] are obtained with the rstandard and rstudent

functions, respectively.

leverages defined at alr[E9.12] are returned by the function hatvalues.

Cook’s distance defined in alr[9.5], are returned by the function cooks.distance.

influence The function call influence(m1, do.coef=TRUE)$coefficients returns a matrix whose
i-th row is β(i).

You can use these quantities in graphs or for any other purpose. For example,

press <- residuals(m1) / (1 - hatvalues(m1))

computes and saves the PRESS residuals, alr[P8.4].

par(mfrow=c(1,2))

plot(predict(m1), residuals(m1, type="pearson"))

m2 <- update(m1, ~ . - Dose)

plot(predict(m1), predict(m2))
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This displays two plots, one of Pearson residuals versus fitted values and the second of fitted values
from two models. Both of these plots could benefit from additions such as point identification, adding
a horizontal line at the origin in the right plot, and adding a 45o line in the second plot.

The car package includes a number of functions that draw graphs related to diagnostic analysis,
and 2 of these are particularly useful for the material in alr:

residualPlots This function is for basic residual plotting (see also Companion[6.2.1]). Here are some
of the variations:

residualPlot(m1) # Pearson residuals versus fitted values

residualPlots(m1) # array of plots of Pearson residuals versus each regressor

residualPlots(m1, ~ BodyWt, fitted=FALSE) # Pearson residuals versus BodyWt

Plots against splines or polynomials plot versus the predictor that defined the regressors. Plots
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versus factors are boxplots of the Pearson residuals. This function also computes and displays the
curvature tests described in alr[9.2].

As with almost all plots in the car package, you can use point identification:

residualPlots(m1, id.n=2, id.method=list("x", "y"))

Test stat Pr(>|t|)
BodyWt 0.019 0.985
LiverWt -0.576 0.574
Dose 0.144 0.887
Tukey test 0.932 0.351
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In this example setting id.n=2, id.method-list("x", "y") will identify the two most extreme
points in the y, or horizontal direction, and the two most extreme in the x or vertical direction.
The latter is required to label to point with the very large fitted value.

As a second example, alr[F9.5] is obtained from

m2 <- lm(fertility ~ log(ppgdp) + pctUrban, UN11)

residualPlots(m2)

Test stat Pr(>|t|)
log(ppgdp) 5.407 0.000
pctUrban 3.287 0.001
Tukey test 5.420 0.000
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In this example all three curvature tests have very small significance levels, leading to the conclu-
sion that the model fits poorly.

influenceIndexPlot plots Cook’s distance, Studentized residuals, Bonferroni significance levels to
testing each observation in turn to be an outlier, and leverage values, or a subset of these, versus
observation number (see also Companion[6.3.2]).

influenceIndexPlot(m1)
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Index

9.1 The Residuals

9.1.2 The Hat Matrix

The code for alr[F9.1] is
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n <- dim(UN11)[1]

levs <- pf(99*c(.01, .03, .05, .07), 2, n) - 1/n

with(UN11, dataEllipse(pctUrban, log(ppgdp),

levels=levs - 1/n, xlim=c(-20, 130), ylim=c(3, 14)))

0 50 100

4
6

8
10

12
14

pctUrban

lo
g(

pp
gd

p)

●

● ●●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●●

● ●

●

●

●●

●

●

●●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●●

●

●●●●

First n is set to the sample size, and levs are the quantiles of the F (2, n) distribution corresponding
to the values shown. The dataEllipse function in car (see also Companion[4.3.8]) is used to draw
the ellipses. To identify and mark points interactively, the command

with(UN11, identify(pctUrban, log(ppgdp), rownames(UN11)))

can be used. Read ?identify before trying this! (See also Companion[4.3.5].)
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The hat-matrix H is rarely computed in full because it is an n × n matrix that can be very large.
Its diagonal entries, the leverages, are computed simply by hatvalues(m1) for a model m1. Should you
wish to compute H in full, you can use the following commands. First, suppose that X is an n × p
matrix. Then

decomp <- qr(cbind(rep(1,n),X))

Hat <- qr.Q(decomp) %*% t(qr.Q(decomp))

The use of qr and qr.Q is probably nonintuitive, so here is an explanation. First, append a column
of ones to X for the intercept. Then, compute the QR decomposition, alr[A.9], of the augmented
matrix. The helper function qr.Q returns Q, and the second command is just alr[EA.27].

9.1.3 Residuals and the Hat Matrix with Weights

As pointed out in alr[8.1.3], the residuals for wls are
√
wi × (yi − ŷi). Whatever computer program

you are using, you need to check to see how residuals are defined.
The correct residuals for wls using R are given by residuals(m1,type="pearson"). These are also

correct for ols, and so these should always be used in graphical procedures. The hatvalues function
will return the correct leverages including the weights.

9.2 Testing for Curvature

The function residualPlots illustrated on page 89 implements the curvature tests described in alr[9.2].

9.3 Nonconstant Variance

The function ncvTest described in Section 7.2.2 can be used to test for nonconstant variance.
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9.4 Outliers

The function outlierTest returns the values of the outlier test (the Studentized residuals) and the
corresponding Bonferroni-corrected p-values for outlier testing (see also Companion[6.3]).

m2 <- lm(fertility ~ log(ppgdp) + pctUrban, UN11)

outlierTest(m2)

No Studentized residuals with Bonferonni p < 0.05
Largest |rstudent|:

rstudent unadjusted p-value Bonferonni p
Equatorial Guinea 3.339 0.001007 0.2005

9.5 Influence of Cases

Cook’s distance is computed with the cooks.distance function and displayed in an index plot in the
influenceIndexPlot (e.g., alr[F9.9] function.

alr[F9.7] is a complex graph, and we describe how it is obtained. The data in the plot are the

values of β̂(i), the estimated coefficient estimates computed after deleting the ith case, for 1 = 1, . . . , n.
These are obtained in R using

m1 <- lm(log(fertility) ~ log(ppgdp) + lifeExpF, UN11)

betahat.not.i <- influence(m1)$coefficients

The plot was drawn using the pairs function, which has an argument panel that tells pairs what to
plot.

panel.fun <- function(x, y, ...){

points(x, y, ...)

dataEllipse(x, y, plot.points=FALSE, levels=c(.90))

showLabels(x, y, labels=rownames(UN11),

id.method="mahal", id.n=4)}
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The panel function will use the points function to plot the points, the dataEllipse function from car

to draw the ellipse, and the showLabels function from car to label the extreme points. The plot is
finally drawn with

pairs(betahat.not.i, panel=panel.fun)
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9.6 Normality Assumption

The function qqPlot in the car package can be used to get normal probability plots with the simu-
lated envelopes by default, or other quantile-quantile plots for other distributions (see also Compan-
ion[6.3.1]). For example, for the UN data regression set up in the last section,

qqPlot(m2, id.n=3)

Niger Zambia Equatorial Guinea
197 198 199

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

t Quantiles

S
tu

de
nt

iz
ed

 R
es

id
ua

ls
(m

2)

●
●●●●

●●●●
●●●

●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●
●●●●●

●
●●
●●●●

●●
●

●
●

●Equatorial Guinea
ZambiaNiger

The qqPlot function uses Studentized residuals, not Pearson residuals.
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Variable Selection

10.1 Variable Selection and Parameter Assessment

The colinearity diagnostic R2
X1,X2

is related to the vif function in car; see Section 4.1.5.

10.2 Variable Selection for Discovery

10.2.1 Information Criteria

The information criteria alr[E10.6–E10.7] depend only on the RSS, p′, and possibly an estimate of
σ2, and so if these are needed for a particular model, they can be computed from the usual summaries

99
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available in a fitted regression model. In addition, the extractAIC can be used to compute aic and
bic. For a fitted subset model m0 and a fitted larger model m1, the following commands extract these
quantities:

extractAIC(m0, k=2) # for AIC

extractAIC(m0, k=log(length(residuals(m0)))) # for BIC

10.2.2 Stepwise Regression

The Furnival and Wilson leaps and bounds algorithm mentioned in alr[10.2.2] is implemented in the
leaps function in the leaps package. Because of the limitations to this algorithms described in alr,
and the relatively difficult to use interface in the implementation in R, most users will not find the
all-possible regression approach useful.

The step function in base R can be used for the stepwise approach outlined in alr[10.2.2] (see also
Companion[4.5]).

args(step)

function (object, scope, scale = 0, direction = c("both", "backward",
"forward"), trace = 1, keep = NULL, steps = 1000, k = 2,
...)

NULL

The values of these argument depend on whether forward, backward, or stepwise fitting is to be used.
As an example, we use the highway data.

Highway$sigs1 <- with(Highway, (sigs * len + 1)/len)

f <- ~ log(len) + shld + log(adt) + log(trks) + lane + slim +lwid +

itg + log(sigs1) + acpt + htype

The above commands created the variable sigs1 used in the text. The variable f is a one-sided formula
that will be used below both to update models and as an argument to the step function.
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Forward Stepwise

Recalling that len is to be included in all models, forward selection is specified by

m0 <- lm(log(rate) ~ log(len), Highway) # the base model

m.forward <- step(m0, scope=f, direction="forward")

Start: AIC=-72.51
log(rate) ~ log(len)

Df Sum of Sq RSS AIC
+ slim 1 2.547 2.94 -94.9
+ acpt 1 2.101 3.38 -89.4
+ shld 1 1.707 3.78 -85.1
+ log(sigs1) 1 0.961 4.52 -78.0
+ htype 3 1.340 4.14 -77.4
+ log(trks) 1 0.728 4.76 -76.1
+ log(adt) 1 0.429 5.06 -73.7
<none> 5.48 -72.5
+ lane 1 0.263 5.22 -72.4
+ itg 1 0.217 5.27 -72.1
+ lwid 1 0.185 5.30 -71.8

Step: AIC=-94.87
log(rate) ~ log(len) + slim

Df Sum of Sq RSS AIC
+ acpt 1 0.288 2.65 -96.9
+ log(trks) 1 0.263 2.67 -96.5
<none> 2.94 -94.9
+ log(sigs1) 1 0.147 2.79 -94.9
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+ htype 3 0.336 2.60 -93.6
+ shld 1 0.033 2.90 -93.3
+ log(adt) 1 0.026 2.91 -93.2
+ lwid 1 0.017 2.92 -93.1
+ lane 1 0.003 2.93 -92.9
+ itg 1 0.003 2.93 -92.9

Step: AIC=-96.9
log(rate) ~ log(len) + slim + acpt

Df Sum of Sq RSS AIC
+ log(trks) 1 0.1729 2.48 -97.5
<none> 2.65 -96.9
+ log(sigs1) 1 0.1201 2.53 -96.7
+ shld 1 0.0346 2.61 -95.4
+ log(adt) 1 0.0152 2.63 -95.1
+ lane 1 0.0149 2.63 -95.1
+ itg 1 0.0135 2.63 -95.1
+ lwid 1 0.0126 2.64 -95.1
+ htype 3 0.2175 2.43 -94.2

Step: AIC=-97.53
log(rate) ~ log(len) + slim + acpt + log(trks)

Df Sum of Sq RSS AIC
<none> 2.48 -97.5
+ shld 1 0.0653 2.41 -96.6
+ log(sigs1) 1 0.0506 2.42 -96.3
+ log(adt) 1 0.0312 2.44 -96.0
+ htype 3 0.2595 2.22 -95.9
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+ lwid 1 0.0190 2.46 -95.8
+ itg 1 0.0110 2.46 -95.7
+ lane 1 0.0033 2.47 -95.6

The first segment of the above output matches alr[T10.1], except bic was added to the table. Each
step deletes the regressor or term that will make the greatest decrease the criterion function aic unless
all such deletions increase aic. m.forward will be the model when the stepwise fitting ends (that is,
adding another term would increase aic). If trace=0 the output for each step is suppressed.

Backward Elimination

m1 <- update(m0, f)

m.backward <- step(m1, scope = c(lower = ~ log(len)), direction="backward")

The model m1 includes all the regressors. The lower scope includes log(len), so this must be included
in all models. There is also an upper scope, and since it is not specified it is all the regressors. Had
the lower scope not been specified the default would be lower = ~ 1, the model with no regressors.

Stepwise

R uses direction = "both", the default, for stepwise regression. There are two variations, starting
with the null model,

m.stepup <- step(m0, scope=f)

and starting with all the regressors,

m.stepdown <- step(m1, scope = c(lower = ~ log(len)))

The argument k=2 is used if aic is to be used as the criterion; k=log(n), where n is the sample size
will use bic. The argument scale is rarely used with linear models.
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10.2.3 Regularized Methods

The regularized methods briefly described in alr[10.2.3] are the only methods in the first 11 chapters
of alr that use a method other than ols or wls to get estimates. They are designed specifically for
the problem of prediction, and they can be shown to give smaller prediction errors if sample sizes are
large enough, and the data are like the data that will be observed in the future.

The lasso and elastic net methods can be computed in R using the glmnet.cv function in the glmnet
package (Simon et al., 2011). The alr4 provides a convenience function called Glmnet.cv that allows
you to use the syntax for a formula that is used with lm, and then translate your input into commands
necessary to run glmnet.cv.

The randomForest package is described by Liaw and Wiener (2002).

10.3 Model Selection for Prediction

10.3.1 Cross Validation

10.4 Problems
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Nonlinear Regression

11.1 Estimation for Nonlinear Mean Functions

11.3 Starting Values

The command nls is used to obtain ols and wls estimates for nonlinear regression models with a
command like

n1 <- nls(formula, data, start)

nls differs from lm in a few key respects:
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1. The formula argument for defining a model is different. In lm, a typical formula is Y ~ X1 + X2

+ X3 + X4. This formula specifies the names of the response and the regressors, but parameters
do no appear. This causes no particular problem with linear models. If X1 is a variate there is one
corresponding parameter, while if it is a factor, polynomial, interaction or spline there are rules
to determine the parameters from the model specification.

For a nls model, the formula specifies both regressors and parameters. A typical example might
be

Y ~ th1 + th2 * (1 - exp(-th3 * x))

In this case there are three parameters, th1, th2 and th3, but only one term, x. The right-hand
side formula should be an expression of parameters, terms, and numbers that can be evaluated
by the computer language C.

2. The data argument provides the name of the data frame with the relevant data, the same as for
lm.

3. A named list start of starting values must be specified. This serves the dual purpose of telling the
algorithm where to start, and also to name the parameters. For the example, start=list(th1=620,
th2=200, th3=10) indicates that th1, th2 and th3 are parameters, and so by implication the
remaining quantity, x, must be a regressor.

4. The data frame must contain the regressors, not predictors that define the regressors. In particular,
nls does not permit factors.

5. Most iterative algorithms for nonlinear least squares require computation of derivatives, and many
programs require the user to provide formulas for the derivatives. This is not the case in nls; all
derivatives are computed using numerical differentiation.

Here is the input leading to alr[T11.2]

n1 <- nls(Gain ~ th1 + th2*(1 - exp(-th3 * A)), data=turk0,

start=list(th1=620, th2=200, th3=10))

summary(n1)
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Formula: Gain ~ th1 + th2 * (1 - exp(-th3 * A))

Parameters:
Estimate Std. Error t value Pr(>|t|)

th1 622.96 5.90 105.57 < 2e-16
th2 178.25 11.64 15.32 2.7e-16
th3 7.12 1.21 5.91 1.4e-06

Residual standard error: 19.7 on 32 degrees of freedom

Number of iterations to convergence: 4
Achieved convergence tolerance: 1.48e-06

We called nls with the required arguments of a formula and starting values. In addition, we specified
a data frame. R has many other arguments to nls, including several that are identical with arguments
of the same name in lm, including subset for selecting cases, weights for using wls, and na.action

for setting the missing value action. A few arguments are used to change the details of the computing
algorithm; see the help page for nls.

Similar to an object created by the lm command, objects created by nls have summary, plot and
predict methods, and these are used in a way that is similar to linear regression models. For example,
alr[F11.2] is obtained by

plot(Gain ~ A, turk0, xlab="Amount (percent of diet)", ylab="Weight gain, g")

x <- (0:44)/100

lines(x, predict(n1, data.frame(A=x)))
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Lack-of-fit testing is possible if there are repeated observations. The idea is to compare the nonlinear
fit to the one-way analysis of variance, using the levels of the predictor as a grouping variable:

m1 <- lm(Gain ~ as.factor(A), turk0)

anova(n1,m1)

Analysis of Variance Table

Model 1: Gain ~ th1 + th2 * (1 - exp(-th3 * A))
Model 2: Gain ~ as.factor(A)

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)
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1 32 12367
2 29 9824 3 2544 2.5 0.079

The model m1 is a linear model, while n1 is a nonlinear model. Even so, the anova will correctly compare
them, giving the F test for lack of fit.

Factors

Factors and other multi-degree of freedom regressors cannot be used directly when using nls. For
factors, the corresponding sets of dummy variables must be used in place of the factor. The variable S

in the turkey data frame is an indicator or source of the additive, with levels 1, 2 or 3. We first convert
S to a factor and then to a set of 3 dummy indicators for the three levels.

temp <- model.matrix( ~ as.factor(S) -1, turkey)

colnames(temp) <- c("S1", "S2", "S3")

turkey <- cbind(turkey, temp)

The model.matrix command creates the necessary regressors for the one-sided formula specified. We
converted S to a factor, and removed the intercept with the -1. The column names were corrected, and
then the new columns were added to the data frame.

The code for fitting the four models using wls is given next. The vector m is the number of pens at
each treatment combination, and is the vector of weights for this problem, S is the factor, and Gain is
the response variable.

# fit the models

m4 <- nls( Gain ~ (th1 + th2*(1-exp(-th3*A))),

data=turkey,start=list(th1=620, th2=200, th3=10),

weights=m)

# most general

m1 <- nls( Gain ~ S1*(th11 + th21*(1-exp(-th31*A)))+

S2*(th12 + th22*(1-exp(-th32*A)))+
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S3*(th13 + th23*(1-exp(-th33*A))),

data=turkey,

start= list(th11=620, th12=620, th13=620,

th21=200, th22=200, th23=200,

th31=10, th32=10, th33=10),

weights=m)

# common intercept

m2 <- nls(Gain ~ th1 +

S1*(th21*(1-exp(-th31*A)))+

S2*(th22*(1-exp(-th32*A)))+

S3*(th23*(1-exp(-th33*A))),

data=turkey,

start= list(th1=620,

th21=200, th22=200, th23=200,

th31=10, th32=10, th33=10),

weights=m)

# common intercept and asymptote

m3 <- nls( Gain ~ (th1 + th2 *(

S1*(1-exp(-th31*A))+

S2*(1-exp(-th32*A))+

S3*(1-exp(-th33*A)))),

data=turkey,

start= list(th1=620, th2=200,

th31=10,th32=10,th33=10),

weights=m)

In each of the models we had to specify starting values for all the parameters. The starting values we
use essentially assume no group differences. Here are the anova tables to compare the models:

anova(m4, m2 ,m1)
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Analysis of Variance Table

Model 1: Gain ~ (th1 + th2 * (1 - exp(-th3 * A)))
Model 2: Gain ~ th1 + S1 * (th21 * (1 - exp(-th31 * A))) + S2 * (th22 * (1 - exp(-th32 * A))) + S3 * (th23 * (1 - exp(-th33 * A)))
Model 3: Gain ~ S1 * (th11 + th21 * (1 - exp(-th31 * A))) + S2 * (th12 + th22 * (1 - exp(-th32 * A))) + S3 * (th13 + th23 * (1 - exp(-th33 * A)))

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)
1 10 4326
2 6 2040 4 2286 1.68 0.27
3 4 1151 2 889 1.54 0.32

anova(m4, m3, m1)

Analysis of Variance Table

Model 1: Gain ~ (th1 + th2 * (1 - exp(-th3 * A)))
Model 2: Gain ~ (th1 + th2 * (S1 * (1 - exp(-th31 * A)) + S2 * (1 - exp(-th32 * A)) + S3 * (1 - exp(-th33 * A))))
Model 3: Gain ~ S1 * (th11 + th21 * (1 - exp(-th31 * A))) + S2 * (th12 + th22 * (1 - exp(-th32 * A))) + S3 * (th13 + th23 * (1 - exp(-th33 * A)))

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)
1 10 4326
2 8 2568 2 1758 2.74 0.12
3 4 1151 4 1417 1.23 0.42

A simpler but less general approach to working with a factor uses the nlsList function in the nlme

package.

library(nlme)

n2 <- nlsList(Gain ~ th1 + th2*(1 - exp(-th3 * A))|S, data=turkey,

start=list(th1=620, th2=200, th3=10), pool=TRUE)

summary(n2)

Call:
Model: Gain ~ th1 + th2 * (1 - exp(-th3 * A)) | S



CHAPTER 11. NONLINEAR REGRESSION 112

Data: turkey

Coefficients:
th1

Estimate Std. Error t value Pr(>|t|)
1 626.1 6.998 89.47 8.355e-05
2 648.3 14.932 43.42 8.438e-03
3 645.2 14.360 44.93 2.163e-02

th2
Estimate Std. Error t value Pr(>|t|)

1 183.4 16.85 10.883 0.0056
2 243.5 145.06 1.679 0.2103
3 356.8 305.10 1.170 0.5838

th3
Estimate Std. Error t value Pr(>|t|)

1 7.514 1.644 4.5698 0.03057
2 2.706 2.659 1.0177 0.32767
3 1.904 2.288 0.8324 0.68223

Residual standard error: 7.502 on 4 degrees of freedom

This fit the same model to each level of S separately, giving the same fit at the model m1. Using the
argument pool=TRUE used the pooled error in computing tests and standard errors, again equivalent to
model m1.

11.4 Bootstrap Inference

The fitted model for the segreg data is
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s1 <- nls(C ~ th0 + th1 * (pmax(0, Temp - gamma)), data=segreg,

start=list(th0=70, th1=.5, gamma=40))

summary(s1)

Formula: C ~ th0 + th1 * (pmax(0, Temp - gamma))

Parameters:
Estimate Std. Error t value Pr(>|t|)

th0 74.695 1.343 55.61 < 2e-16
th1 0.567 0.101 5.64 2.1e-06
gamma 41.951 4.658 9.01 9.4e-11

Residual standard error: 5.37 on 36 degrees of freedom

Number of iterations to convergence: 2
Achieved convergence tolerance: 1.67e-08

The pmax function computes element by element maxima for vectors, so pmax(0, Temp - gamma) re-
turns a vector of the same length as Temp and equal to Temp if Temp− gamma > 0, and 0 otherwise. The
summary output matches alr[T11.2].

A bootstrap can be done using the Boot function in the car package. For example, to get the
bootstrap leading to alr[F11.5], using R

set.seed(10131985)

s1.boot <- Boot(s1, R=999)

Number of bootstraps was 867 out of 999 attempted

Only 867 of 999 attempted bootstraps converged. For example, of all the cases in the bootstrap had
large enough values of Temp, all values of γ smaller than the minimum observed Temp would give the
same fitted model, so γ would not be estimable.
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summary(s1.boot)

R original bootBias bootSE bootMed
th0 867 74.695 0.2325 1.451 74.952
th1 867 0.567 0.0448 0.125 0.582
gamma 867 41.951 1.4724 4.722 42.609

This gives the sample size R, the ols estimates, the difference between the ols estimates and the
average of the bootstrap estimates called the bootstrap bias), the standard deviation of the bootstraps,
which estimates the standard error of the estimates, and the median of the bootstraps. The bootstrap
standard errors are only slightly larger than the standard errors from asymptotic theory.

The bca confidence intervals are

confint(s1.boot)

Bootstrap quantiles, type = bca

2.5 % 97.5 %
th0 71.044 77.0674
th1 0.437 0.8338
gamma 36.144 53.0444

and histograms are given by

hist(s1.boot, layout=c(1, 3))
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CHAPTER 12

Binomial and Poisson Regression

The glm Function

Binomial and Poisson regression are examples of generalized linear models. These models are fit in R
using the glm function (see also Companion[5]). The usual form of calls to glm is

g1 <- glm(formula, family, data, weights, subset, na.action, start = NULL)

The arguments data, weights, subset and na.action are used in the same way they are used in
lm. The family argument is new, and the formula argument is a little different than its use in lm or
nls. There are a few other arguments, mostly modifying the computational algorithm, that are rarely
needed.
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Binomial Data

The R command leading to alr[T12.1] is

g1 <- glm(cbind(died, m-died) ~ log(d), family=binomial, data=BlowBS)

The formula argument is cbind(died, m-died) ~ log(d). The response for a binomial response is a
matrix with the columns, the first column giving the number of successes, in this case the number of
trees that blew down, and the second column the number of failures, here the number of survivors. The
right-side of the formula is the linear predictor, in this model consisting only of the implied intercept
and log(d). The family=binomial argument specifies a binomial regression; the full version of this
argument is family=binomial(link="logit") to get logistic regression; see ?family for other standard
link functions (see also Companion[T5.3]). The standard output is:

summary(g1)

Call:
glm(formula = cbind(died, m - died) ~ log(d), family = binomial,

data = BlowBS)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.898 -0.810 0.353 1.135 2.330

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.892 0.633 -12.5 <2e-16
log(d) 3.264 0.276 11.8 <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 250.856 on 34 degrees of freedom
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Residual deviance: 49.891 on 33 degrees of freedom
AIC: 117.5

Number of Fisher Scoring iterations: 4

This output is very similar to lm output, as explained in alr.
The fit summarized in alr[T12.2] uses the data file Blowdown. In this data set the unit of analysis

is a tree, which either survived or died. Fitting with this data file uses binomial regression,

g2 <- glm(y ~ (log(d) + s)^2, binomial, Blowdown, subset=spp=="balsam fir")

The response y has values 0 and 11. For binomial regression a matrix with first column the number
of successes and second column the number of failures is not needed. The notation (log(d) + s)^2

expands to log(d) + s + log(d):s, the second-order model.

Poisson Regression

The syntax is similar for Poisson regression models. For the model of alr[T12.5],

p1 <- glm(count ~ (type + sex + citizen)^3, poisson, AMSsurvey)

The notation (type + sex + citizen)^3 expands to the second-order model with all main-effects,
two-factor and three-factor interactions.

Tests and Deviance

For a glm model, the deviance is returned by the deviance helper function,

c(dev=deviance(g2), df=df.residual(g2))

1The response can also be a factor with two levels. The first level of the factor is considered to be a failure, and the
other level a success.
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dev df
35.75 71.00

The functions Anova, linearHypothesis and deltaMethod work with generalized linear models just as
they do with linear models, returning type II tests by default. For example, for alr[T12.3],

g3 <- glm(y ~ (log(d) + s + spp)^3 , binomial, Blowdown)

Anova(g3)

Analysis of Deviance Table (Type II tests)

Response: y
LR Chisq Df Pr(>Chisq)

log(d) 228 1 < 2e-16
s 594 1 < 2e-16
spp 510 8 < 2e-16
log(d):s 42 1 1.1e-10
log(d):spp 72 8 2.1e-12
s:spp 36 8 1.4e-05
log(d):s:spp 20 8 0.0088

The tests produced are as discussed in alr[12.3].

12.2 Binomial Regression

alr[F12.2] was drawn with the following commands:

plot( I(died/m) ~ d, BlowBS, xlab="Diameter, cm", ylab="Observed blow down frac.",

cex=.4*sqrt(m), log="x", ylim=c(0,1))

dnew <- seq(3, 40, length=100)

lines(dnew, predict(g1, newdata=data.frame(d=dnew), type="response"), lwd=1.5)

grid(col="gray", lty="solid")
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In the call to plot the identity function I(died/m) makes sure the R will compute the fraction of
successes and not interpret the division sign as part of the formula. The cex=.4*sqrt(m) argument is
used to set the size of the plotted symbols, in this case with radius proportional to

√
m, so the area of

the plotted symbol is proportional to the sample size. The multiplier 0.4 was found through trial and
error to match the size of the plot. The argument log="x" instructs plotting the horizontal of x-axis in
log-scale. The vector dnew gives 100 equally spaced points between 3 and 40, and the lines function
plots the fitted curve, using the predict function applied to the model g1 computed above, at those
points. The last command adds a gray grid to the plot.

The effects plot alrF12.3 is obtained by
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e2 <- Effect(c("d", "s"), g2, xlevels=list(s=c(.2, .35, .55)))

plot(e2, multiline=TRUE, grid=TRUE,

xlab="Diameter",main="", ylab="Prob. of blow down",

rescale.axis=FALSE, rug=FALSE,

key.args=list(corner=c(.02,.98)))
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The model g2 was computed above. The call to Effect tells R to compute effects for the highest order
term including c("d", "s"), or for the s:d interaction. Since both of these regressors are continuous,
Effect will use its default method for choosing discrete levels of the regressors to plot, but this modified
by the next xlevels argument for the variable on the horizontal axis.
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The plot function has a method for effects objects. multiline=TRUE will put all the estimated lines
on one graph, rather than a separate graph for each line (multiline=FALSE is the default). The argu-
ment rescale.axis controls what is plotted on the vertical axis. If rescale.axis=TRUE, the default,
then the vertical axis is labeled with probabilities, but the tick marks are equally spaced in logit scale.
If rescale.axis=FALSE, as done in alr[F12.3], then the vertical axis is labeled with probabilities, and
the tick marks are equally spaced in probability scale. The documentation ?plot.eff is unfortunately
complex, and the best way to figure out what the arguments do is to try them and see.

The remaining arguments are rug=FALSE, which tells R to not include a so-called rug plot, which
is a small marker in the horizontal axis for each of the observed values of the quantity plotted on the
horizontal axis, and key.args=list(corner=c(.02, .98)), which in this case tells R to put the key
2% of the way from the vertical axis and 98% of the way from the horizontal axis.

The effects plot in alr[F12.4] was computed using

e3 <- Effect(c("d", "s","spp"), g3, xlevels=list(s=c(.2, .35, .55 )))

plot(e3, multiline=TRUE, grid=TRUE,

xlab="Diameter",main="", lines=c(1, 3, 2), rotx=45,

ylab="Prob. of blow down", rescale.axis=FALSE, rug=FALSE)



CHAPTER 12. BINOMIAL AND POISSON REGRESSION 123

Diameter

P
ro

b.
 o

f b
lo

w
 d

ow
n

0.2

0.4

0.6

0.8

1.0

as
pe

n

ba
lsa

m
 fir

bla
ck

 sp
ru

ce
ce

da
r

jac
kp

ine

pa
pe

r b
irc

h

re
d 

pin
e

re
d 

m
ap

le

bla
ck

 a
sh

●

●

●

●

●

●

●
●

●

d

●

●

●

●

●

●

●

●

●

d

●

●

●

●

●

●

●

●

●

d

as
pe

n

ba
lsa

m
 fir

bla
ck

 sp
ru

ce

ce
da

r

jac
kp

ine

pa
pe

r b
irc

h

re
d 

pin
e

re
d 

m
ap

le

bla
ck

 a
sh

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●

●

●

●

●

d

s
0.2
0.35
0.55

●

lines=c(1, 3, 2), which changed the assignment of line types to levels of s, and rotx=45 rotates the
tick-mark labels on the horizontal axis by 45 degrees to prevent overprinting the labels.
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12.3 Poisson Regression

The effects plot in alr[F12.5] is computed as follows:

AMSsurvey$type <- factor(AMSsurvey$type, levels=levels(AMSsurvey$type)

[order(xtabs(count ~ type, AMSsurvey))])

p2 <- glm(count ~ type*sex + type*citizen, poisson, AMSsurvey)

plot(Effect(c("type", "citizen"), p2), multiline=TRUE, ci.style="bars",

main="", xlab="Type", ylab="Number of Ph. D.s", rescale.axis=FALSE,

row = 1, col = 1, nrow = 1, ncol = 2, more = TRUE, grid=TRUE,

key.args=list(corner=c(.02,.98)))

plot(Effect(c("type", "sex"), p2), multiline=TRUE, ci.style="bars",

main="", xlab="Type", ylab="Number of Ph. D.s", rescale.axis=FALSE,

row = 1, col = 2, nrow = 1, ncol = 2, more = FALSE, grid=TRUE,

key.args=list(corner=c(.02, .98)))
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The first command reordered the levels of type to be ordered according to the number of PhDs in each
of the levels rather than alphabetically. The model p2 fits with only the interactions and main-effects
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of interest. There are several new features to the effects plots themselves. The function Effect is first
called to get the highest-order effect based on type and citizen. The ci.style="bars" argument
is used to display uncertainty using bars rather than lines. The set of arguments row = 1, col =

1, nrow = 1, ncol = 2, more = TRUE are used to allow drawing more than one graph in the same
window. Because plot.eff uses lattice graphics doing this is somewhat obscure. The arguments
here specify that the first plot is in row 1, column 1 of an array with nrows=1 and ncols=2, and the
more plots will be drawn. The second plot has more=FALSE.



APPENDIX A

Appendix

A.5 Estimating E(Y |X) Using a Smoother

A bewildering array of options are available for smoothing, both in the base programs, and in packages
available from others. In alr, we have almost always used the loess smoother or an older version of
it called lowess1. There is no particular reason to prefer this smoother over other smoothers. For the
purposes to which we put smoothers, mainly to help us look at scatterplots, the choice of smoother is
probably not very important.

The important problem of choosing a smoothing parameter is generally ignored in alr; one of the

1loess and lowess have different defaults, and so they will give the same answers only if they are set to use the same
tuning parameters.
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nice features of loess is that choosing the smoothing parameter of about 2/3 usually gives good answers.
R have several methods for selecting a smoothing parameter; see the references given in alr[A.5], for
more information.

The lowess function is used to draw alr[FA.1]

plot(Height ~ Dbh, ufcwc, xlab="Diameter at 137 cm above ground",

ylab="Height, decimeters" )

grid(col="gray", lty="solid")

abline(lm(Height ~ Dbh, ufcwc), lty=3, lwd=2)

lines(lowess(ufcwc$Dbh, ufcwc$Height, iter=1, f=.1), lty=4, lwd=2)

lines(lowess(ufcwc$Dbh ,ufcwc$Height, iter=1, f=2/3), lty=1, lwd=2)

lines(lowess(ufcwc$Dbh, ufcwc$Height, iter=1, f=.95), lty=2, lwd=2)

legend("bottomright", legend=c("f=.1","f=2/3","f=.95","OLS"),

lty=c(4, 1, 2, 3), lwd=2, inset=.02)
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We have used the lines helper to add the lowess fits to the graph, with different values of the smoothing
argument, f. We set the argument iter to one rather than the default value of three.

More or less the same figure can be obtained using loess.

with(ufcwc, {

plot(Dbh, Height)

abline(lm(Height ~ Dbh), lty=3)

new <- seq(100, 1000, length=100)

m1 <- loess(Height ~ Dbh, degree=1, span=.1)

m2 <- loess(Height ~ Dbh, degree=1, span=2/3)

m3 <- loess(Height ~ Dbh, degree=1, span=.95)

lines(new, predict(m1, data.frame(Dbh=new)), lty=4, col="cyan")

lines(new, predict(m2, data.frame(Dbh=new)), lty=1, col="red")

lines(new, predict(m3, data.frame(Dbh=new)), lty=2, col="blue")

legend(700, 200, legend=c("f=.1", "f=2/3", "f=.95", "OLS"),

lty=c(4, 1, 2, 3))

})
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loess expects a formula. degree=1 uses local linear, rather than quadratic, smoothing, to match
lowess. The span argument is like the f argument for lowess.

A.6 A Brief Introduction to Matrices and Vectors

(See also Companion[8.2].)

A.9 The QR Factorization

R computes the QR factorization using Lapack routines, or the slightly older but equally good Linpack
routines. We illustrate the use of these routines with a very small example.

X <- matrix(c(1, 1, 1, 1, 2, 1, 3, 8, 1, 5, 4, 6), ncol=3,

byrow=FALSE)
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y <- c(2, 3, -2, 0)

X

[,1] [,2] [,3]
[1,] 1 2 1
[2,] 1 1 5
[3,] 1 3 4
[4,] 1 8 6

y

[1] 2 3 -2 0

QR <- qr(X)

Here X is a 4 × 3 matrix, and y is a 4 × 1 vector. To use the QR factorization, we start with the
command qr. This does not find Q or R explicitly but it does return a structure that contains all the
information needed to compute these quantities, and there are helper functions to return Q and R:

qr.Q(QR)

[,1] [,2] [,3]
[1,] -0.5 -0.27854 0.7755
[2,] -0.5 -0.46424 -0.6215
[3,] -0.5 -0.09285 -0.0605
[4,] -0.5 0.83563 -0.0935

qr.R(QR)

[,1] [,2] [,3]
[1,] -2 -7.000 -8.000
[2,] 0 5.385 2.043
[3,] 0 0.000 -3.135
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Q is a 4×3 matrix with orthogonal columns, and R is is a 3×3 upper triangular matrix. These matrices
are rarely computed in full like this. Rather, other helper functions are used.

In the regression context, there are three helpers that return quantities related to linear regression,
using alr[EA.25–EA.27].

qr.coef(QR,y)

[1] 1.7325 -0.3509 0.0614

qr.fitted(QR,y)

[1] 1.0921 1.6886 0.9254 -0.7061

qr.resid(QR,y)

[1] 0.9079 1.3114 -2.9254 0.7061

qr.coef computes alr[EA.26], qr.fitted computes the fitted values QQ′y, and qr.resid computes
residuals y −QQ′y.

The backsolve command is used to solve triangular systems of equations, as described in alr[A.9].
The basic linear regression routine lm uses the QR factorization to obtain estimates, standard errors,

residuals and fitted values.

A.10 Spectral Decomposition

The spectral decomposition is computed with the svd function, which stands either for singular value
decomposition or spectral decomposition. See the R documentation ?svd.
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