Parallel Nondeterministic Programming as a
Language Extension to C (Short Paper)

Lucas Kramer
krame505@umn.edu
University of Minnesota
Minneapolis, MN, USA

Abstract

This paper explores parallel nondeterministic programming
as an extension to the C programming language; it provides
constructs for specifying code containing ambiguous choice
as introduced by McCarthy. A translator to plain C code was
implemented as an extension to the ABLEC language specifi-
cation. Translation involves a transformation to continuation
passing style, providing lazy choice by storing continuation
closures in a separate task buffer. This exploration considers
various search evaluation approaches and their impact on
correctness and performance. Multiple search drivers were
implemented, including single-threaded depth-first search, a
combined breadth- and depth-first approach, as well as two
approaches to parallelism. Several benchmark applications
were created using the extension, including n-Queens, SAT,
and triangle peg solitaire. The simplest parallel search driver,
using independent threads, showed the best performance in
most cases, providing a significant speedup over the sequen-
tial versions. Adding task sharing between threads showed
similar or slightly improved performance.

CCS Concepts + Software and its engineering — Par-
allel programming languages; Extensible languages.

Keywords nondeterministic programming, parallel program-
ming, extensible languages

ACM Reference Format:

Lucas Kramer and Eric Van Wyk. 2019. Parallel Nondeterminis-
tic Programming as a Language Extension to C (Short Paper). In
Proceedings of the 18th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences (GPCE ’19), Octo-
ber 21-22, 2019, Athens, Greece. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3357765.3359524

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
GPCE ’19, October 21-22, 2019, Athens, Greece

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6980-0/19/10...$15.00
https://doi.org/10.1145/3357765.3359524

20

Eric Van Wyk
evw@umn.edu
University of Minnesota
Minneapolis, MN, USA

1 Introduction

Nondeterministic programming is a semi-declarative pro-
gramming paradigm, useful for expressing solutions to some
types of search problems. Instead of needing to explicitly
integrate all control logic into their code, nondeterministic
programming allows programmers to express their logic in
terms of new control constructs representing “ambiguous”
choice and related operations. Issues related to search order-
ing and parallelism are managed by the language, allowing
the programmer to experiment with various implementa-
tions much more easily. Such code should also be easier to
write and debug, as programmers need only worry about the
logic of their application, while relying on the semantics of
the nondeterministic language to correctly implement and
manage the search processes.

Efficiency is important in any programming paradigm, and
is determined principally for nondeterministic programming
by the approach taken to drive exploration of the search tree:
should this be done in a depth-first order, breadth-first order,
or something else? As expected, this is highly dependent
on the particular application. However, in exploring new
approaches it is also important to consider what search or-
dering semantics are provided; this essentially constitutes a
“contract” between the language designer and the program-
mer, providing rules for what can and cannot be done; for
example, can choice options be tried in a different order
than they are written? Permitting such may allow for per-
formance improvements, but may hinder the programmer in
reasoning about correctness and termination. Parallel evalu-
ation approaches may allow for the greatest speedups, but
excessively strict constraints may hinder parallelism.

We explore nondeterministic programming by implement-
ing the desired language constructs not as a new language
but instead as a language extension to C, using the ABLEC
extensible C language specification [Kaminski et al. 2017a]’.
This is useful for programmers using the system since many
of the standard parts of any language (arithmetic expressions,
I/0O, etc.) simply come from the C host language. This also
frees the language developers to focus their efforts on the
new constructs being explored and not on re-implementing
standard language features.

! aBLEC and the nondeterministic extension (with all the example programs)

are both available at http://melt.cs.umn.edu and archived, respectively, at
https://doi.org/10.13020/D6VQ25 and https://doi.org/10.13020/b42x-hm18.

https://doi.org/10.1145/3357765.3359524
https://doi.org/10.1145/3357765.3359524
http://melt.cs.umn.edu
https://doi.org/10.13020/D6VQ25
https://doi.org/10.13020/b42x-hm18

GPCE ’19, October 21-22, 2019, Athens, Greece

1 search int range(int lower, int upper) {
2 choice for (int i = lower; i < upper; i++)
3 succeed 1i;

4}

5 search int factor(int n) {

6 if (n % 2 == 0) {

7 choice {

8 succeed 2;

9 choose succeed factor(n / 2);

10 }

11 } else {

12 choose int a = range(ceil(sqrt(n)), n);
13 spawn;

14 float b = sqrt(a * a - n);

15 require b == floor(b);

16 choice {

17 succeed a - (int)b;

18 succeed a + (int)b;

19 ¥ 33

20 ...

21 int result;

22
23

bool success =

&result, factor(n));

invoke (search_sequential_dfs,

Lucas Kramer and Eric Van Wyk

void range(closure<(int)
int upper) {

-> void> k,
int lower,

1

2

3 for (int i = lower; i < upper; i++)
4 k(i);

5%

6 void factor(closure<(int)->void> k, int n){
7 if (n % == 0) {

8 k(2);

9 factor(k, n / 2);

10 } else {

11 range(lambda (int a) -> void {

12 float b = sqrt(a * a - n);

13 if (b == floor(b)) {

14 k(a - (int)b);

15 k(a + (int)b);

16 }

17 }, ceil(sqrt(n)), n);

18 3} 3

19 ...

20 int result;

21 bool success;

22 factor(lambda (int res) -> void

23 { result = res; success = true; }, n)

Figure 1. (left) A simple nondeterministic program implementing Fermat’s method of factorization to find one of the prime
factors of an integer?. (right) A simplified translation of this program, ignoring the existence of spawn and tasks.

2 Design

Nondeterministic Extension to C: A simple example of
a nondeterministic program is given on the left in Figure 1;
it implements Fermat’s method for factorization, based on
the principle that any odd integer n may be expressed as the
difference of two squares, giving

n=a’-b®=(a+b)(a-Db) (2.1)

We can use this to factor a number by nondeterministically
trying a range of values for a, and computing b until it is
found to be an integer.

The extension to C provides a number of new keywords:
the search keyword marks the the definition of a search func-
tion, whose body is an embedded domain-specific language
for nondeterministic programming. The syntax of a search
function body mirrors ordinary C statements, with decla-
rations, expressions, and control statements allowed.>. The
most basic nondeterministic construct is the choice { ... }
statement. When reached, execution “splits” for each state-
ment within the choice (referred to as options of the choice)
and continues along multiple virtual threads until success

2 Only recording one result is currently supported; more can be obtained
by invoking a wrapper search function that saves results to a buffer.
3Nondeterministic statements may not occur inside ordinary C iteration
statements, for implementation reasons that will become apparent later -
instead the program may need to be transformed to use recursion.

21

or failure.* On line 7 on the left execution either succeeds or
tries n / 2. Often the number of options for a choice may
vary dynamically, so we provide the

choice for (init; cond; update) { body }
statement, that spawns a new virtual thread for each itera-
tion, see line 2. Note this differs from a normal for loop in
that each iteration is independent from the others.

Execution of a search function may succeed (possibly
many times) or fail; this is indicated by the succeed val; and
fail; statements, used in place of return. Failure is silent and
implicit: a search function may fail simply by ending without
an explicit succeed. A common idiom is if (cond) { ... }
else fail; failing if a condition is not met; thus an equiva-
lent shorthand require cond; (line 15) is provided.

Another operation is to call a search function and nonde-
terministically select succeeding result value(s). This may
be done with the choose def = fn(args); search statement
(line 12), nondeterministically binding a variable to every
succeeding value of the search function, each in a new vir-
tual thread. Sometimes we only need one result; in these
cases the pick statement is used. pick is identical to choose,
except further exploration of choice options in the called
search function will be canceled after the first success; this

4By virtual threads we simply mean independent paths of execution, regard-
less of whether the implementation utilizes multithreaded parallelism.

Parallel Nondeterministic Programming as a Language Extension to C

is somewhat analogous to cut in Prolog. Since choosing or
picking a value and immediately succeeding with it is a
common pattern, the shorthand choose succeed fn(args)
(line 9) or pick succeed fn(args); is provided, also allow-
ing optimized translation.

By default, the virtual threads created by the options of
a choice statement are fully evaluated in order, resulting in
a sequential depth-first search. More flexibility is needed to
allow for different evaluation approaches and parallelism; to
accomplish this, a program may be divided into discrete tasks
to be lazily executed in a potentially different order, or even
in parallel by multiple real threads. A task is begun by the
spawn statement, creating a new task for each virtual thread
of execution reaching that point. Each task comprises all code
executed until the next spawn or the end of the program.

Translation: The translation of a nondeterministic program
into “plain” C code is required to execute the program. The
translation of the nondeterministic program on the left of
Figure 1 can be seen on the right of that figure. This is es-
sentially a translation to continuation-passing style (CPS), a
method of transforming general recursion into tail recursion.
The transformation works by replacing the return value of a
function with a function closure, known as a continuation,
passed as a parameter to be called with the function’s result.
When calling another CPS function, any further work needed
to compute a result from the result of the call must be done
inside the continuation passed to the called function. A CPS
program may perform a nondeterministic choice simply by
calling the continuation more than once, as exhibited on the
right in Figure 1 on lines 14 and 15. Alternatively, failure can
be handled simply by not calling the continuation, as is done
in the case of require. This can be seen in the use of require
on line 15 (right), where the choice on lines 16—19 (left) is
only evaluated when the condition b == floor(b) is true.
Note that if additional statements existed after a choice, they
could simply be wrapped in an additional continuation clo-
sure and called multiple times instead of calling the function
continuation; however, this simple example does not have
any such statements. The translation of the nondeterminis-
tic program on the left of Figure 1 can be seen on the right
of that figure. Here we utilize an existing lambda-closure
extension to ABLEC [Kaminski et al. 2017b], inspired by a
simplified form of lambdas from C++11.

Allowing for Parallelism: CPS must be extended to deal
with the spawning of tasks. A task is represented as a clo-
sure similar to a continuation, except with no result value
parameter. When a task is spawned its closure is stored in
a “schedule” task buffer, the details of which will be dis-
cussed later. An external search driver function (provided
in a runtime library) will demand the execution of these
tasks, possibly in some parallel manner. Every search func-
tion, task closure, and continuation is parameterized by a
pointer to the current buffer, so that executing a task on a

22

GPCE ’19, October 21-22, 2019, Athens, Greece

1 typedef closure<(taskbuf_t *) -> void>
2 task_t;

3 void factor(

4 closure<(taskbuf_t *, int) -> void> k,
5 taskbuf_t *tb, int n) {

6 if (n % 2 == 0) {

7 k(tb, 2));

8 factor(k, tb, n / 2);

9 } else {

10 range (

11 lambda (int a, taskbuf_t =xtb)

12 -> void {

13 put_task (tb,

14 lambda (taskbuf_t *tb) -> void {
15 float b = sqrt(a *x a - n);
16 if (b == floor(b)) {

17 k(tb, a - (int)b);

18 k(tb, a + (int)b); 3}

19 P Y,

20 ceil(sqrt(n)), n);

21 3}

Figure 2. The transformation of the program in Figure 1
using task closures and an external buffer.

buffer may place additional tasks in that buffer. Note that the
continuation closures require this parameter as well, since
a search driver may use multiple buffers internally, and a
continuation may be executed on a different buffer than the
one through which it was created. This transformation is
shown for the factorization example in Figure 2.

To initially call a search function from a regular one, the
invoke expression is used (line 22 of Figure 1), parameterized
by the search driver function to use (and any parameters it
takes), a pointer to a location in which to place the result,
the search function to call, and the parameters. The result
of this expression is a boolean value indicating whether the
search succeeded. This expression simply translates to a call
of the search driver with an initial task closure wrapping a
call of the invoked search function. The continuation given
to this search function records the result and signals that
any remaining search may be canceled.

With the proliferation of tasks closures containing partial
computation results, automatic memory management is vital;
this was implemented via reference counting, although other
approaches (such as the mark-and-sweep method provided
by the Boehm GC [Boehm 1993]) could also suffice.

Search Ordering and Driver Functions: An important de-
sign issue is the order in which the search tree is to be ex-
plored; a balance must be struck between allowing the pro-
grammer to reason about correctness and termination, and
allowing the search driver flexibility to introduce parallelism.

GPCE ’19, October 21-22, 2019, Athens, Greece

In breadth-first search (BES), all tasks at depth n are eval-
uated in order before the first task at depth n + 1 is eval-
uated. This makes reasoning about termination easy, as
breadth-first evaluation means it cannot get “stuck” in a
non-terminating subtree to the left of a solution - if a solu-
tion exists it will eventually be found. However, assuming a
constant branching factor of k, if the first success occurs at
depth n we will need to evaluate between k"~ and k" tasks
before success. Additionally, we must store the entire final
row of k"~ ! tasks in the buffer before any can be evaluated,
resulting in exponential memory usage. This algorithm is
straightforward to implement by using a FIFO queue for the
task buffer, and parallelism can be added simply by having
multiple threads operating on the same buffer in parallel.
However, the large memory overhead precludes the imple-
mentation of this algorithm for non-trivial applications.

In pure depth-first search (DFS), every branch of the search
tree is fully explored before the next is tried. As this approach
explores the entire tree from left-to-right, we may explore
anywhere between 0 and k" choices; although assuming
a balanced tree with s randomly distributed leaf solutions,
we will explore on average k" /s choices before finding one,
again assuming a branching factor of k and solution depth
of n. However, a large or infinite subtree may occur before
the first solution and the search would become “stuck”, un-
like in breadth-first search. On the other hand, the memory
usage is greatly improved, since at most we only need to
store nk tasks, all the options for the immediate ancestors of
the succeeding task. The implementation is similar to BFS,
though the buffer must be slightly more complex, as utiliz-
ing a simple LIFO stack would reverse the order in which
options at each level are considered. Instead, we can use a
“stack of queues,” with each stack “frame” storing a queue of
the options of a choice. Simple DFS unfortunately cannot be
parallelized, as at every step in the search the next task is
usually a descendant of the latest evaluated task.

In modified depth-first search (MDEFS), we initially per-
form BFS down to a fixed level in the tree, then perform a
simultaneous DFS of each resulting leaf until one succeeds.
It can easily be shown that any program terminating un-
der DFS will also terminate under MDFS. Though the actual
performance may vary, on average MDFS explores a simi-
lar number of nodes as DFS, but MDFS can tolerate some
threads becoming stuck in large or infinite subtrees. MDFS
can be implemented by first using the BFS algorithm for a
given number of iterations, before allocating a new buffer for
every task in the queue. We then alternately perform a step
for each of these queues until one succeeds. This sequential
approach can easily be parallelized, by assigning each task
in the queue to a thread at some level of the initial BFS.

A slight inefficiency is that some threads may exhaust
their buffer and finish before others are done, preventing
parallelism for long-running threads. This can be remedied

23

Lucas Kramer and Eric Van Wyk

by a task-sharing approach, where threads with tasks regu-
larly check for (and redistribute tasks to) threads that have
exhausted their buffers. When the last thread notices that it
is about to wait for a task, the search fails. Alternatively, in a
task-stealing approach, a thread, upon exhausting its buffer,
takes the initiative in selecting another thread and stealing
a task from that thread’s buffer.

Four search drivers were implemented: single-threaded
DFS and MDFS, MDFS with independent threads, and MDFS
with task sharing threads (a task stealing version is left
as future work.) All parallelism was done explicitly using
pthreads; a fixed number of threads were spawned, and a
global buffer synchronized by pthread mutexes was used to
initially distribute tasks. The number of threads to use and
the depth to perform BFS initially in each thread were also
made parameters to the search drivers.

In the task sharing driver, some method is needed to wake
up threads that are waiting for a task, once one has been
provided. This was done via pthread condition variables, a
synchronization device that allows threads to suspend exe-
cution and relinquish the processors until some predicate on
shared data is satisfied [Leroy 2003].

3 Benchmark Applications and Results

In addition to the factorization example, we have imple-
mented 3 benchmark applications, 2 of which are NP-complete
problems:®> n-Queens completion, triangle peg solitaire, and

Boolean satisfiability (SAT), all available at the previously

mentioned URLs.

n-Queens Completion: n-Queens is a famous problem in
which n queens must be placed on an n X n board such that
none are threatening another. This is a common AI bench-
mark that is actually solvable by heuristic. n-Queens comple-
tion is a slight modification, where some queens are initially
placed on the board, and we wish to determine whether there
is a solution. This variant is NP-complete [Gent et al. 2017],
and is more computationally interesting.

The implementation of n-Queens consists of a recursive
solver that nondeterministically chooses and applies moves.
The logic for finding a valid move is shown in Figure 3. Note
the use of pick in choosing an empty row; any empty row
is an equally valid choice, but if we fail while considering a
particular empty row, choosing a different row cannot lead to
a solution since every row must eventually contain a queen.
This problem has a relatively high branching factor of n for
an n X n board, but a very low amount of computation is

SNP-complete problems are generally good candidates for nondeterministic
programming. All NP-complete problems have a polynomial-time verifica-
tion algorithm, so we could easily construct a nondeterministic program by
ambiguously choosing any possible solution recursively and requiring that
it is correct (although in practice we can do better with ordering heuristics
and non-leaf constraints.) Although performance will still obviously be
exponential, we may still be interested in a general but efficient solution
for small problem sizes.

Parallel Nondeterministic Programming as a Language Extension to C

1 search unsigned empty_row(state_t st) {

2 choose unsigned row = range(@, st.size);
3 require !row_taken(st, row);

4 succeed row;

5 %

6 search move_t valid_move(state_t st) {

7 pick unsigned row = empty_row(st);

8 choose unsigned col = range(0, st.size);
9 require !col_taken(st, col);

10 require !diag_taken(st, row, col);

11 succeed (move_t){row, col};

12 3}

Figure 3. A portion of the implementation of n-Queens.

needed at each node in the search tree to perform a move
and compute the next valid moves. Due to the size of the
board, a backtracking state representation was utilized to
avoid excessive memory allocation and copy overhead.

In addition to the nondeterministic implementation, a
plain C sequential version performing DFS was created. By
comparing the performance of this with the performance
using the DFS sequential driver, the performance overhead
of the nondeterministic extension can be measured.

Triangle Peg Solitaire: Triangle peg solitaire is a simple
game where the goal is to remove all but one peg in a trian-
gular board by repeatedly jumping a peg over another into
an empty hole on the board and then removing the jumped
peg. The board starts with one empty hole. This problem
has an intermediate branching factor, since there are often
more than 2 available moves, and an intermediate workload
at each node in the search tree, to compute the valid moves.

The solver is implemented as a search function that chooses
valid move, applies it to the current state, and recursively
solves the new state®. When a state with depth equal to the
number of pegs is reached, a buffer to hold the results is
allocated and returned, and each level the taken move is
recorded in the buffer before it is returned. The implementa-
tion is not shown due to its complexity, but it is similar to
that for n-Queens Completion and contains several choices
for finding potential moves and choosing one.

Boolean Satisfiability: Boolean satisfiability, or SAT, is an-
other famous NP-complete problem. Although intractable in
general, with the aid of heuristics it is possible to solve via
search for some reasonably-sized instances.

A SAT solver was implemented for formulas represented
in conjunctive normal form, using the following algorithm:

The board state can be represented by a 64-bit integer, treated as a bit
vector indicating whether each position is occupied. This limits the solver
to board sizes smaller than 11. However boards larger than 9 are nearly
intractable via brute-force search and can be solved via induction from
smaller boards [Bell 2008], and thus are not computationally interesting.

24

GPCE ’19, October 21-22, 2019, Athens, Greece

80 - — 0o 20x20,0
60 | [0100x100, 78 ||
[0100x100, 80
40 |- -
20 |- D -
Lip B el
T T T

DFS LA MDES iDES ((DES
Seq “e““a\é\ga \N“‘“% l\éhaﬂ“% M

Hiost

Figure 4. Measured runtimes in seconds for n-Queens with
the “host” C implementation and various nondeterministic
drivers. Legend: size x size, number of pre-filled locations.
All but the 100x100,80 benchmark are solvable.

1. Simplify the formula to eliminate singular clauses (these
are clauses with only one literal.)

2. Pick a variable to assign using the heuristic of having
the same quality (negated or not negated) in the most
clauses, and nondeterministically add it to the formula
as either negated or not negated.

3. Recursively solve the resulting formula.

Due the overhead of the simplification phase, this problem
has a high workload at every node in the search tree, and a
small branching factor because there are only 2 assignments
possible for each variable.

Performance Results and Discussion: The factorization
example in Figure 1 was tried for a (relatively small) input of
21,641,161, the product of 2 primes. With all search drivers,
the solution required about 3.6 seconds and 4GB of memory,’
so larger tests were not attempted. This is because the initial
“range” choice must generate a task for every number to
be considered before any can be evaluated. Consequently,
this extension is better suited to recursive search problems,
where smaller choices are made throughout the search tree.
For n-Queens, 3 problems were evaluated: a 20x20 empty
board, a 100x100 solvable board with 78 randomly-placed
queens, and a 100x100 unsolvable board with 80 randomly-
placed queens, arranged in this order in Figure 4, grouped
by five different driver functions. Using the “spawning” and
“sharing” MDFS drivers with initial depth 2, approximately 4x
speed-ups were observed over the sequential MDFS driver.
For triangle peg solitaire, performance data was collected
for boards of size 8 and 9, with the corner hole unoccupied.

7 For all applications, performance data was collected on an Intel i7-8550U
processor at 1.8 GHz. This processor features 8 logical cores (4 physical, 2x
hyperthreading), 32KB L1 data and instruction caches, 256KB L2 cache, and
8.2MB L3 cache. For each data set, the runtime was measured for each of
the drivers using a range of parameters, and averaged over 10 trials. All
trials of parallel drivers were run with 8 threads. A range of initial depths
were tried for the MDFS drivers and the fastest time was used.

GPCE ’19, October 21-22, 2019, Athens, Greece

With the parallel MDFS drivers, a speedup of approximately
3x was observed over sequential MDFS, using initial depth 7.
The performance was virtually identical between spawning
and sharing, because in both cases a success occurs before
any threads run out of work, and thus no task sharing actu-
ally occurs. In fact, the sharing performance was marginally
worse due to the additional overhead.

Similar speedups were obtained on the SAT benchmark.
Two formulas from the SATLIB benchmark suite [Hoos 2000]
were evaluated: a satisfiable formula containing 150 variables
and 645 clauses (uf150-02) and an unsatisfiable formula con-
taining 125 variables and 538 clauses (uuf125-01). For another
unsatisfiable SAT formula a surprising 170x speedup was ob-
tained for a satisfiable formula; more investigation is needed
to fully understand this result.

For all applications the task-sharing MDFS driver showed
the best or near-best performance, showing slightly more
overhead than the spawning driver but beating it on exhaus-
tive searches for problems lacking a solution. The optimal
parameters tend to vary for the initial breadth-first search
depth, although this could be addressed by heuristics or
runtime auto-tuning approaches. For n-Queens, the plain-C
implementation of sequential DFS was about 40% faster than
the equivalent nondeterministic version using the sequential
DFS driver, indicating a significant but tolerable amount of
overhead. However the nondeterministic version still pro-
vided an effective performance speedup with parallelism.

4 Related Work

The concept of “ambiguous” or nondeterministic functions,
and nondeterministic choice with regard to program flow,
was first introduced by [McCarthy 1963]. In this case, non-
deterministic choice is done at the expression level, via a
new amb operator. Further inspiration on the language de-
sign came from Ableson et al. [1996] and Al lecture notes by
Davis [2003]. Continuation-passing style is a long-standing
technique in functional programming, and its use in imple-
menting nondeterminism is also discussed in Ableson et al.
[1996].

Parallel nondeterministic computing has widely been ex-
plored in logic programming, such as Parlog [Clark and Gre-
gory 1986], which requires many of the same considerations
with respect to search ordering. However, the automatic
parallelization of an imperative nondeterministic language
appears to be an original contribution by this paper.

Work sharing [Blumofe and Leiserson 2006] and work
stealing [Blumofe and Leiserson 1999] are both existing ap-
proaches to ensuring even distribution of tasks when imple-
menting parallelism. Work stealing has been used to imple-
ment schedulers for automatic parallelism frameworks, such
as OpenMP [Olivier et al. 2012].

Previously language features and extensions have been
proposed for providing task-based parallelism with work

25

Lucas Kramer and Eric Van Wyk

stealing, most notably Cilk [Frigo et al. 1998]. Spawn in the
nondeterministic C extension is similar to spawn in Cilk,
except that there is no corresponding sync operation; execu-
tion simply continues independently along each thread until
failure or overall success.

ABLEC [Kaminski et al. 2017a] is an extensible specifica-
tion of C using the SILVER [Van Wyk et al. 2010] attribute
grammar system. SILVER provides guarantees of composabil-
ity between independently developed language extensions
by providing a modular determinism analysis [Schwerdfeger
and Van Wyk 2009] for concrete syntax and a modular well-
definedness analysis [Kaminski and Van Wyk 2012] for at-
tributes on abstract syntax. The SILVER-ABLEC [Kramer et al.
2019] extension to SILVER was used to specify generated code
with the concrete object-language syntax of ABLEC.

5 Conclusion and Future Work

This paper is a first step in the exploration of nondetermin-
istic programming implemented in an imperative language
as an extension to C. We introduce a number of language
constructs for specifying these types of computations and
compare multiple evaluation strategies. Significant perfor-
mance improvements were found to be possible by leverag-
ing parallelism. The overhead of the extension was found
to be reasonably acceptable by comparison with a plain C
implementation of an example application, although it is
important to remember that goal of the extension is ease of
development rather than absolute performance.

The collection of language constructs has been sufficient
for the applications we have developed so far. However we
continue to explore more intuitive and expressive abstrac-
tions. One area of interest is a more intuitive means to specify
tasks than is done with spawn now. We are also considering
abstractions that provide more fine grain control of the par-
allel evaluation than simply choosing a fixed driver function.

All trials were performed using 8 threads on a machine
with 4 cores and 2x hyperthreading, so it would be inter-
esting to collect scalability data on a machine with a larger
number of cores. With a larger number of threads, the initial
sequential phase of spawning MDFS would become more
significant, potentially allowing the task sharing approach
to win out in more situations with this increase in overhead.

Determining the best values for parameters such as the
initial breadth-first search depth is open problem we an-
ticipate investigating further. We expect auto-tuning tech-
niques [Naono et al. 2010] to be particularly applicable.

Acknowledgments

This material is partially based upon work supported by the
National Science Foundation (NSF) under Grant Nos. 1628929.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not
necessarily reflect the views of the NSF.

Parallel Nondeterministic Programming as a Language Extension to C

References

Harold Ableson, Gerald Jay Sussman, and Julie Sussman. Structure and
Interpretation of Computer Programs. The MIT Press, 2 edition, 1996.
Description of nondeterministic computing in section 4.3.

George L. Bell. Solving triangular peg solitaire. Journal of Integer Sequences,
11, November 2008.

Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded
computations by work stealing. Journal of the ACM, 56(5):720-748,
September 1999.

Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of
multithreaded computations. SIAM Journal on Computing, 27(1):202-229,
July 2006.

Hans-Juergen Boehm. Space efficient conservative garbage collection. In
Proceedings of the ACM Conference on Programming Language Design
and Implementation (PLDI), pages 197-206. ACM, 1993.

Keith Clark and Steve Gregory. Parlog: Parallel programming in logic. ACM
Transactions on Programming Languages and Systems, 8(1):1-49, January
1986.

Ernest Davis. Non-deterministic algorithms. cs.nyu.edu/courses/spring03/
G22.2560-001/nondet.html, 2003. [Online; accessed May 3, 2018].

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementa-
tion of the Cilk-5 multithreaded language. In Proceedings of Programming
Language Design and Implementation (PLDI), pages 212-223, New York,
NY, USA, 1998. ACM.

Ian P. Gent, Christopher Jefferson, and Peter Nightingale. Complexity of
n-queens completion. Journal of Artificial Intelligence Research, 59:815 —
848, September 2017.

Holger H. Hoos. Satlib - benchmark problems. http://www.cs.ubc.ca/~hoos/
SATLIB/benchm.html, August 2000. [Online; accessed May 3, 2018].
Ted Kaminski and Eric Van Wyk. Modular well-definedness analysis for

attribute grammars. In Proceedings of the 5th International Conference on

26

GPCE ’19, October 21-22, 2019, Athens, Greece

Software Language Engineering (SLE), volume 7745 of Lecture Notes in
Computer Science, pages 352-371. Springer, September 2012.

Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. Reliable
and automatic composition of language extensions to C: The ableC
extensible language framework. Proceedings of the ACM on Programming
Languages, 1(OOPSLA):98:1-98:29, October 2017a. ISSN 2475-1421.

Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. Reliable
and automatic composition of language extensions to C — supplemental
material. Technical Report 17-009, University of Minnesota, Department
of Computer Science and Engineering, 2017b. Available at https://www.
cs.umn.edu/research/technical_reports/view/17-009.

Lucas Kramer, Ted Kaminski, and Eric Van Wyk. Reflection in attribute
grammars. In Proceedings of the International Conference on Generative
Programming: Concepts & Experience (GPCE). ACM, 2019.

Xavier Leroy. PTHREAD_COND(3) Linux User’s Manual, 2003.

John McCarthy. A basis for a mathematical theory of computation. Computer
programming and formal systems, pages 33-70, 1963.

Ken Naono, Keita Teranishi, John Cavazos, and Reiji Suda, editors. Software
Automatic Tuning, 2010. Springer. ISBN 978-1-4419-6934-7. doi: 10.1007/
978-1-4419-6935-4.

Stephen L Olivier, Allan K Porterfield, Kyle B Wheeler, Michael Spiegel,
and Jan F Prins. Openmp task scheduling strategies for multicore numa
systems. The International Journal of High Performance Computing Ap-
plications, 26(2):110-124, May 2012.

August Schwerdfeger and Eric Van Wyk. Verifiable composition of deter-
ministic grammars. In Proceedings of the Conference on Programming
Language Design and Implementation (PLDI), pages 199-210, New York,
NY, USA, June 2009. ACM.

Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. Silver: an
extensible attribute grammar system. Science of Computer Programming,
75(1-2):39-54, January 2010.

cs.nyu.edu/courses/spring03/G22.2560-001/nondet.html
cs.nyu.edu/courses/spring03/G22.2560-001/nondet.html
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
https://www.cs.umn.edu/research/technical_reports/view/17-009
https://www.cs.umn.edu/research/technical_reports/view/17-009

	Abstract
	1 Introduction
	2 Design
	3 Benchmark Applications and Results
	4 Related Work
	5 Conclusion and Future Work
	Acknowledgments
	References

